// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/conv_compute.h" #include #include #include #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { TEST(conv_x86, retrive_op) { auto conv2d = KernelRegistry::Global().Create( "conv2d"); ASSERT_FALSE(conv2d.empty()); ASSERT_TRUE(conv2d.front()); } TEST(conv2d_x86, init) { Conv2dCompute conv2d; ASSERT_EQ(conv2d.precision(), PRECISION(kFloat)); ASSERT_EQ(conv2d.target(), TARGET(kX86)); } TEST(conv2d_x86, run_test) { lite::Tensor x, filter, b, out; const int batch_size = 1; std::vector x_shape{batch_size, 3, 3, 3}; x.Resize(lite::DDim(x_shape)); std::vector filter_shape{1, 3, 3, 3}; filter.Resize(lite::DDim(filter_shape)); std::vector b_shape{1, 3, 1, 1}; b.Resize(lite::DDim(b_shape)); std::vector out_shape{batch_size, 1, 1, 1}; out.Resize(lite::DDim(out_shape)); auto x_data = x.mutable_data(); auto filter_data = filter.mutable_data(); auto b_data = b.mutable_data(); auto out_data = out.mutable_data(); for (int64_t i = 0; i < x.dims().production(); i++) { x_data[i] = 1; } for (int64_t i = 0; i < filter.dims().production(); i++) { filter_data[i] = 1; } for (int64_t i = 0; i < b.dims().production(); i++) { b_data[i] = 0; } Conv2dCompute conv2d; operators::ConvParam param; param.x = &x; param.filter = &filter; param.bias = &b; param.output = &out; param.strides = {1, 1}; param.paddings = {0, 0}; param.groups = 1; param.dilations = {1, 1}; LOG(INFO) << 123; std::unique_ptr ctx(new KernelContext); ctx->As(); conv2d.SetContext(std::move(ctx)); conv2d.SetParam(param); conv2d.Run(); LOG(INFO) << "output: "; float ref_result[1] = {27.}; for (int i = 0; i < out.dims().production(); i++) { EXPECT_NEAR(out_data[i], ref_result[i], 1e-5); } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(conv2d, kX86, kFloat, kNCHW, def);