// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class ElementwiseComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; DDim dims_{{1, 2, 3, 4}}; public: ElementwiseComputeTester(const Place& place, const std::string& alias, int axis) : TestCase(place, alias), axis_(axis) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = x->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = x_data[i] + y_data[i]; } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("elementwise_add"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data.data()); } }; class ElementwiseMulComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; DDim dims_{{1, 2, 3, 4}}; public: ElementwiseMulComputeTester(const Place& place, const std::string& alias, int axis) : TestCase(place, alias), axis_(axis) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = x->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = x_data[i] * y_data[i]; } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("elementwise_mul"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data.data()); } }; class ElementwiseMaxComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; DDim dims_{{1, 2, 3, 4}}; public: ElementwiseMaxComputeTester(const Place& place, const std::string& alias, int axis) : TestCase(place, alias), axis_(axis) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = x->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = std::max(x_data[i], y_data[i]); } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("elementwise_max"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data.data()); } }; class FusionElementwiseAddActivationComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; std::string act_type_; DDim dims_{{1, 2, 3, 4}}; public: FusionElementwiseAddActivationComputeTester(const Place& place, const std::string& alias, int axis, std::string act_type) : TestCase(place, alias), axis_(axis), act_type_(act_type) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = x->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = x_data[i] + y_data[i]; if (act_type_ == "relu") { out_data[i] = out_data[i] > 0 ? out_data[i] : 0; } else { LOG(FATAL) << "unsupported Activation type: " << act_type_; } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("fusion_elementwise_add_activation"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); op_desc->SetAttr("act_type", act_type_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data.data()); } }; class FusionElementwiseMulActivationComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; std::string act_type_; DDim dims_{{1, 2, 3, 4}}; public: FusionElementwiseMulActivationComputeTester(const Place& place, const std::string& alias, int axis, std::string act_type) : TestCase(place, alias), axis_(axis), act_type_(act_type) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = x->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = x_data[i] * y_data[i]; if (act_type_ == "relu") { out_data[i] = out_data[i] > 0 ? out_data[i] : 0; } else { LOG(FATAL) << "unsupported Activation type: " << act_type_; } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("fusion_elementwise_mul_activation"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); op_desc->SetAttr("act_type", act_type_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data.data()); } }; class FusionElementwiseMaxActivationComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; std::string act_type_; DDim dims_{{1, 2, 3, 4}}; public: FusionElementwiseMaxActivationComputeTester(const Place& place, const std::string& alias, int axis, std::string act_type) : TestCase(place, alias), axis_(axis), act_type_(act_type) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = x->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = std::max(x_data[i], y_data[i]); if (act_type_ == "relu") { out_data[i] = out_data[i] > 0 ? out_data[i] : 0; } else { LOG(FATAL) << "unsupported Activation type: " << act_type_; } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("fusion_elementwise_max_activation"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); op_desc->SetAttr("act_type", act_type_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data.data()); } }; class ElementwiseDivComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; DDim dims_{{1, 2, 3, 4}}; public: ElementwiseDivComputeTester(const Place& place, const std::string& alias, int axis) : TestCase(place, alias), axis_(axis) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = y->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = x_data[i] / y_data[i]; } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("elementwise_div"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } std::vector data2(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data2[i] = (i + 1) * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data2.data()); } }; class FusionElementwiseDivActivationComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string inputx_ = "x"; std::string inputy_ = "y"; std::string output_ = "out"; int axis_; std::string act_type_; DDim dims_{{1, 2, 3, 4}}; public: FusionElementwiseDivActivationComputeTester(const Place& place, const std::string& alias, int axis, std::string act_type) : TestCase(place, alias), axis_(axis), act_type_(act_type) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(inputx_); const auto* x_data = x->data(); auto* y = scope->FindTensor(inputy_); const auto* y_data = y->data(); for (int i = 0; i < dims_.production(); i++) { out_data[i] = x_data[i] / y_data[i]; if (act_type_ == "relu") { out_data[i] = out_data[i] > 0 ? out_data[i] : 0; } else { LOG(FATAL) << "unsupported Activation type: " << act_type_; } LOG(INFO) << "fusion div resul:" << out_data[i]; } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("fusion_elementwise_div_activation"); op_desc->SetInput("X", {inputx_}); op_desc->SetInput("Y", {inputy_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("axis", axis_); op_desc->SetAttr("act_type", act_type_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } std::vector data2(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data2[i] = (i + 1) * 1.1; } SetCommonTensor(inputx_, dims_, data.data()); SetCommonTensor(inputy_, dims_, data2.data()); } }; void test_elementwise(Place place) { for (int axis : {-1, 0, 1, 3}) { std::unique_ptr tester( new ElementwiseComputeTester(place, "def", axis)); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); std::unique_ptr tester_mul( new ElementwiseMulComputeTester(place, "def", axis)); arena::Arena arena_mul(std::move(tester_mul), place, 2e-5); arena_mul.TestPrecision(); std::unique_ptr tester_max( new ElementwiseMaxComputeTester(place, "def", axis)); arena::Arena arena_max(std::move(tester_max), place, 2e-5); arena_max.TestPrecision(); std::unique_ptr tester_div( new ElementwiseDivComputeTester(place, "def", axis)); arena::Arena arena_div(std::move(tester_div), place, 2e-5); arena_div.TestPrecision(); } } TEST(Elementwise, precision) { #ifdef LITE_WITH_X86 Place place(TARGET(kX86)); #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_elementwise(place); #endif } void test_fusion_elementwise(Place place) { for (int axis : {-1, 0, 1, 3}) { std::unique_ptr tester_add_act( new FusionElementwiseAddActivationComputeTester( place, "def", axis, "relu")); arena::Arena arena_add_act(std::move(tester_add_act), place, 2e-5); arena_add_act.TestPrecision(); std::unique_ptr tester_mul_act( new FusionElementwiseMulActivationComputeTester( place, "def", axis, "relu")); arena::Arena arena_mul_act(std::move(tester_mul_act), place, 2e-5); arena_mul_act.TestPrecision(); std::unique_ptr tester_max_act( new FusionElementwiseMaxActivationComputeTester( place, "def", axis, "relu")); arena::Arena arena_max_act(std::move(tester_max_act), place, 2e-5); arena_max_act.TestPrecision(); std::unique_ptr tester_div_act( new FusionElementwiseDivActivationComputeTester( place, "def", axis, "relu")); arena::Arena arena_div_act(std::move(tester_div_act), place, 2e-5); arena_div_act.TestPrecision(); } } TEST(FusionElementwise, precision) { #ifdef LITE_WITH_X86 Place place(TARGET(kX86)); #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_fusion_elementwise(place); #endif } } // namespace lite } // namespace paddle