// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_image_converter.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/logging.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class ElementwiseMulImageCompute : public KernelLite { public: using param_t = operators::ElementwiseParam; std::string doc() const override { return "ElementwiseMul using cl::Image2D(ImageDefault/RGBA), kFP32"; } void PrepareForRun() override { ele_param_ = param_.get_mutable(); auto* y = ele_param_->Y; auto* x = ele_param_->X; auto bias_dims = y->dims(); auto x_dims = x->dims(); if (bias_dims == x_dims) { kernel_func_name_ = "elementwise_mul"; } else { const int bias_dim_size = bias_dims.size(); if (bias_dim_size == 1) { kernel_func_name_ = "channel_mul_d1"; } else if (bias_dim_size == 2) { kernel_func_name_ = "channel_mul_d2"; } else if (bias_dim_size == 3) { kernel_func_name_ = "channel_mul_d3"; } else if (bias_dim_size == 4) { kernel_func_name_ = "channel_mul_d4"; } else { LOG(FATAL) << "Unsupported ElementwiseMul with x_dims:" << x_dims << " y_dims:" << bias_dims; } } VLOG(1) << "kernel_func_name_:" << kernel_func_name_; VLOG(4) << "x_dims:" << x_dims; VLOG(4) << "bias_dims:" << bias_dims; VLOG(4) << "bias_dims.size():" << bias_dims.size(); auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "image/elementwise_mul_kernel.cl", build_options_, time_stamp_); } void Run() override { auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* x = ele_param_->X; auto* y = ele_param_->Y; auto* out = ele_param_->Out; #ifndef LITE_SHUTDOWN_LOG VLOG(4) << "x->target():" << TargetToStr(x->target()); VLOG(4) << "y->target():" << TargetToStr(y->target()); VLOG(4) << "out->target():" << TargetToStr(out->target()); VLOG(4) << "x->dims():" << x->dims(); VLOG(4) << "y->dims():" << y->dims(); VLOG(4) << "out->dims():" << out->dims(); #endif paddle::lite::CLImageConverterDefault default_convertor; auto x_img_shape = default_convertor.InitImageDimInfoWith(x->dims()); // w, h auto x_img_width = x_img_shape[0]; auto x_img_height = x_img_shape[1]; auto out_img_shape = default_convertor.InitImageDimInfoWith(out->dims()); // w, h auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims()); auto* x_img = x->data(); auto* y_img = y->data(); auto* out_img = out->mutable_data(out_img_shape[0], out_img_shape[1]); #ifndef LITE_SHUTDOWN_LOG VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height; VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1]; VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " " << out_img_shape[1]; #endif STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); auto bias_dims = y->dims(); auto x_dims = x->dims(); if (bias_dims == x_dims) { // kernel_func_name_ = "elementwise_mul"; cl_int status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *y_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, *out_img); CL_CHECK_FATAL(status); } else { const int bias_dim_size = bias_dims.size(); if (bias_dim_size == 1) { // kernel_func_name_ = "channel_mul_d1"; const int tensor_w = x_dims[x_dims.size() - 1]; cl_int status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *y_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(3, tensor_w); CL_CHECK_FATAL(status); } else if (bias_dim_size == 2) { // kernel_func_name_ = "channel_mul_d2"; const int tensor_w = x_dims[x_dims.size() - 1]; cl_int status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *y_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(3, tensor_w); CL_CHECK_FATAL(status); } else if (bias_dim_size == 3) { // kernel_func_name_ = "channel_mul_d3"; const int tensor_w = x_dims[x_dims.size() - 1]; cl_int status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *y_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(3, tensor_w); CL_CHECK_FATAL(status); } else if (bias_dim_size == 4) { // kernel_func_name_ = "channel_mul_d4"; const int tensor_w = x_dims[x_dims.size() - 1]; cl_int status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *y_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(3, tensor_w); CL_CHECK_FATAL(status); } else { LOG(FATAL) << "Unsupported ElementwiseMul with x_dims:" << x_dims << " y_dims:" << bias_dims; } } auto global_work_size = cl::NDRange{static_cast(x_img_width), static_cast(x_img_height)}; auto status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_img, event_); #ifndef LITE_SHUTDOWN_LOG VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height; #endif } protected: param_t* ele_param_{nullptr}; std::string kernel_func_name_{"elementwise_mul"}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle namespace ocl = paddle::lite::kernels::opencl; REGISTER_LITE_KERNEL(elementwise_mul, kOpenCL, kFP16, kImageDefault, ocl::ElementwiseMulImageCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();