// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "lite/kernels/bm/bridges/graph.h" #include "lite/kernels/bm/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace bm { int BoxCoderConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto scope = op->scope(); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto box_var_name = op_info->Input("PriorBox").front(); auto box = scope->FindVar(box_var_name)->GetMutable(); auto box_dims = box->dims(); auto box_var_var_name = op_info->Input("PriorBoxVar").front(); auto box_var = scope->FindVar(box_var_var_name)->GetMutable(); auto box_var_dims = box_var->dims(); auto target_box_var_name = op_info->Input("TargetBox").front(); auto target_box = scope->FindVar(target_box_var_name)->GetMutable(); auto target_box_dims = target_box->dims(); auto output_var_name = op_info->Output("OutputBox").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); std::vector i_box_shape_data(box_dims.size()); for (size_t i = 0; i < box_dims.size(); i++) { i_box_shape_data[i] = static_cast(box_dims[i]); } std::vector i_box_var_shape_data(box_var_dims.size()); for (size_t i = 0; i < box_var_dims.size(); i++) { i_box_var_shape_data[i] = static_cast(box_var_dims[i]); } std::vector i_target_box_shape_data(target_box_dims.size()); for (size_t i = 0; i < target_box_dims.size(); i++) { i_target_box_shape_data[i] = static_cast(target_box_dims[i]); } std::vector i_output_shape_data(output_dims.size()); for (size_t i = 0; i < output_dims.size(); i++) { i_output_shape_data[i] = static_cast(output_dims[i]); } auto code_type = op_info->GetAttr("code_type"); auto box_normalized = op_info->GetAttr("box_normalized"); int32_t axis = 0; if (op_info->HasAttr("axis")) { axis = op_info->GetAttr("axis"); } std::vector variance; if (op_info->HasAttr("variance")) { variance = op_info->GetAttr>("variance"); } user_cpu_param_t bm_param; bm_param.op_type = USER_PADDLE_BOX_CODER; bm_param.u.box_coder_param.axis = axis; bm_param.u.box_coder_param.variance = &variance[0]; bm_param.u.box_coder_param.code_type = (code_type == "encode_center_size") ? 0 : 1; bm_param.u.box_coder_param.normalized = box_normalized; int32_t input_num = 3; int32_t output_num = 1; int32_t* in_shape[3]; int32_t in_dim[3]; const char* in_name[3]; in_shape[0] = &i_box_shape_data[0]; in_shape[1] = &i_target_box_shape_data[0]; in_shape[2] = &i_box_var_shape_data[0]; in_dim[0] = box_dims.size(); in_dim[1] = target_box_dims.size(); in_dim[2] = box_var_dims.size(); in_name[0] = static_cast(box_var_name.c_str()); in_name[1] = static_cast(target_box_var_name.c_str()); in_name[2] = static_cast(box_var_var_name.c_str()); int32_t* out_shape[1]; int32_t out_dim[1]; const char* out_name[1]; out_shape[0] = &i_output_shape_data[0]; out_dim[0] = output_dims.size(); out_name[0] = static_cast(output_var_name.c_str()); add_user_cpu_layer(graph->GetCompilerHandle(), input_num, in_shape, in_dim, in_name, output_num, out_shape, out_dim, out_name, &bm_param, static_cast(sizeof(bm_param))); graph->AddNode(output_var_name); return SUCCESS; } } // namespace bm } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(box_coder, kBM, paddle::lite::subgraph::bm::BoxCoderConverter);