/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "../test_helper.h" #include "../test_include.h" #include "operators/batchnorm_op.h" namespace paddle_mobile { namespace framework { template class TestBatchNormOp { public: explicit TestBatchNormOp(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); // DLOG << " **block size " << blocks.size(); for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); // DLOG << " ops " << ops.size(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; if (op->Type() == "batch_norm" && op->Input("X")[0] == "conv2d_0.tmp_0") { DLOG << " mul attr size: " << op->GetAttrMap().size(); DLOG << " inputs size: " << op->GetInputs().size(); DLOG << " outputs size: " << op->GetOutputs().size(); DLOG << " Input X is : " << op->Input("X")[0]; DLOG << " Input Mean is : " << op->Input("Mean")[0]; DLOG << " Input Variance is : " << op->Input("Variance")[0]; DLOG << " Input Scale is : " << op->Input("Scale")[0]; DLOG << " Input Bias is : " << op->Input("Bias")[0]; DLOG << " Output Y is : " << op->Output("Y")[0]; DLOG << " epsilon : " << op->GetAttrMap().at("epsilon").Get(); std::shared_ptr> lrn = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(lrn); } } } } std::shared_ptr predict_bn(const Tensor &t1, const Tensor &t2, const Tensor &t3, const Tensor &t4, const Tensor &t5) { // feed auto scope = program_.scope; Variable *x1_feed_value = scope->Var("conv2d_0.tmp_0"); auto tensor_x1 = x1_feed_value->GetMutable(); tensor_x1->ShareDataWith(t1); Variable *mean_feed_value = scope->Var("batch_norm_0.w_1"); auto tensor_mean = mean_feed_value->GetMutable(); tensor_mean->ShareDataWith(t2); Variable *scale_feed_value = scope->Var("batch_norm_0.w_0"); auto tensor_scale = scale_feed_value->GetMutable(); tensor_scale->ShareDataWith(t3); Variable *variance_feed_value = scope->Var("batch_norm_0.w_2"); auto tensor_variance = variance_feed_value->GetMutable(); tensor_variance->ShareDataWith(t4); Variable *bias_feed_value = scope->Var("batch_norm_0.b_0"); auto tensor_bias = bias_feed_value->GetMutable(); tensor_bias->ShareDataWith(t5); Variable *output = scope->Var("batch_norm_0.tmp_2"); auto *output_tensor = output->GetMutable(); output_tensor->mutable_data({4, 10, 2, 2}); // DLOG << typeid(output_tensor).name(); // DLOG << "output_tensor dims: " << output_tensor->dims(); std::shared_ptr out_tensor = std::make_shared(); out_tensor.reset(output_tensor); predict_bn(t1, t2, t3, t4, t5, 0); return out_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; void predict_bn(const Tensor &t1, const Tensor &t2, const Tensor &t3, const Tensor &t4, const Tensor &t5, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; DLOG << "op -> run()"; op->Run(); } } }; template class TestBatchNormOp; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run BatchNormOp Test"; paddle_mobile::Loader loader; auto program = loader.Load(std::string( "../../test/models/image_classification_resnet.inference.model")); /// input x (4,10,2,2) paddle_mobile::framework::Tensor inputx1; SetupTensor(&inputx1, {4, 10, 2, 2}, static_cast(0), static_cast(1)); auto *inputx1_ptr = inputx1.data(); paddle_mobile::framework::Tensor mean; SetupTensor(&mean, {10}, static_cast(0), static_cast(1)); auto *mean_ptr = mean.data(); paddle_mobile::framework::Tensor scale; SetupTensor(&scale, {10}, static_cast(0), static_cast(1)); auto *scale_ptr = scale.data(); paddle_mobile::framework::Tensor variance; SetupTensor(&variance, {10}, static_cast(0), static_cast(1)); auto *variance_ptr = variance.data(); paddle_mobile::framework::Tensor bias; SetupTensor(&bias, {10}, static_cast(0), static_cast(1)); auto *bias_ptr = bias.data(); paddle_mobile::framework::TestBatchNormOp testBatchNormOp( program); auto output_bn = testBatchNormOp.predict_bn(inputx1, mean, scale, variance, bias); auto *output_bn_ptr = output_bn->data(); /// [2, 5, 1, 0] DLOG << " (" << inputx1_ptr[102] << " - " << mean_ptr[5] << ")/((" << variance_ptr[5] << " + 0.00001" << ")^0.5)* " << scale_ptr[5] << " + " << bias_ptr[5] << " = "; DLOG << output_bn_ptr[102]; return 0; }