// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/backends/npu/builder.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace kernels { namespace npu { namespace bridges { node_map_type ArgmaxConverter(const std::shared_ptr argmax_op, const node_map_type& inputs_map) { auto scope = argmax_op->scope(); auto op_info = argmax_op->op_info(); auto op_type = op_info->Type(); auto unique_op_type = lite::npu::UniqueName(op_type); LOG(INFO) << "[NPU] Converting " + op_type + "..."; int axis = op_info->GetAttr("axis"); std::shared_ptr argmax_node = std::make_shared(unique_op_type); auto x_var_name = op_info->Input("X").front(); CHECK(inputs_map.count(x_var_name)); argmax_node->set_input_x1(*inputs_map.at(x_var_name)); lite::npu::OpList::Global().add(inputs_map.at(x_var_name)); lite::npu::OpList::Global().add(argmax_node); Tensor x2_t; x2_t.Resize(std::vector{1}); auto x2_t_data = x2_t.mutable_data(); x2_t_data[0] = axis; auto x2 = std::make_shared(unique_op_type + "/axis"); x2->set_attr_value(lite::npu::CvtTensor(&x2_t)); argmax_node->set_input_x2(*x2); lite::npu::OpList::Global().add(x2); // argmax_node->set_attr_axis(axis); // argmax only support output_type==int32 // argmax_node->set_attr_output_type(3); node_map_type outputs_map; outputs_map[op_info->Output("Out").front()] = argmax_node; return outputs_map; } } // namespace bridges } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_NPU_BRIDGE(arg_max, paddle::lite::kernels::npu::bridges::ArgmaxConverter);