/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef SOFTMAX_OP #include "operators/math/softmax.h" #include #include #include #include "common/types.h" #include "operators/math/math_func_neon.h" namespace paddle_mobile { namespace operators { namespace math { #if defined(__ARM_NEON) || defined(__ARM_NEON__) #ifndef __aarch64__ inline float32_t vmaxvq_f32(const float32x4_t &r) { float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r)); return vget_lane_f32(vpmax_f32(v, v), 0); } inline float32_t vaddvq_f32(const float32x4_t &r) { float32x2_t v = vadd_f32(vget_high_f32(r), vget_low_f32(r)); return vget_lane_f32(vpadd_f32(v, v), 0); } #endif // __aarch64__ #endif // __ARM_NEON__ float find_max(const float *input, const int num_classes) { int remain = num_classes; float max = -std::numeric_limits::max(); #if defined(__ARM_NEON) || defined(__ARM_NEON__) int loop = num_classes >> 3; remain = num_classes & 0x7; float32x4_t __max = vdupq_n_f32(max); for (int i = 0; i < loop; ++i, input += 8) { float32x4_t x0 = vld1q_f32(input); float32x4_t x1 = vld1q_f32(input + 4); __max = vmaxq_f32(x0, __max); __max = vmaxq_f32(x1, __max); } max = vmaxvq_f32(__max); #endif for (int i = 0; i < remain; ++i) { max = std::max(max, input[i]); } return max; } template <> void SoftmaxFuntor::operator()(const framework::Tensor *X, framework::Tensor *Y) { const framework::DDim &dims = X->dims(); int batch_size = dims[0]; int num_classes = dims[dims.size() - 1]; int channels = X->numel() / batch_size / num_classes; const float *x = X->data(); float *y = Y->mutable_data(); #pragma omp parallel for collapse(2) for (int batch = 0; batch < X->dims()[0]; ++batch) { for (int channel = 0; channel < channels; ++channel) { size_t offset = (batch * channels + channel) * num_classes; const float *input = x + offset; float *output = y + offset; // find max float max = find_max(input, num_classes); // exp(x - max) int remain = num_classes; #if defined(__ARM_NEON) || defined(__ARM_NEON__) int loop = num_classes >> 3; remain = num_classes & 0x7; float32x4_t __max = vdupq_n_f32(max); for (int i = 0; i < loop; ++i, input += 8, output += 8) { float32x4_t x0 = vld1q_f32(input); float32x4_t x1 = vld1q_f32(input + 4); x0 = vsubq_f32(x0, __max); x1 = vsubq_f32(x1, __max); x0 = exp_ps(x0); x1 = exp_ps(x1); vst1q_f32(output, x0); vst1q_f32(output + 4, x1); } #endif // __ARM_NEON__ for (int i = 0; i < remain; ++i) { output[i] = std::expf(input[i] - max); } // sum(exp(x - max)) float sum = 0.f; output = y + offset; #if defined(__ARM_NEON) || defined(__ARM_NEON__) float32x4_t __sum = vdupq_n_f32(0.f); for (int i = 0; i < loop; ++i, output += 8) { float32x4_t x0 = vld1q_f32(output); float32x4_t x1 = vld1q_f32(output + 4); __sum = vaddq_f32(x0, __sum); __sum = vaddq_f32(x1, __sum); } sum += vaddvq_f32(__sum); #endif // __ARM_NEON__ for (int i = 0; i < remain; ++i) { sum += output[i]; } // exp(x - max) / sum float inv_sum = 1.f / sum; output = y + offset; #if defined(__ARM_NEON) || defined(__ARM_NEON__) float32x4_t __inv_sum = vdupq_n_f32(inv_sum); for (int i = 0; i < loop; ++i, output += 8) { float32x4_t x0 = vld1q_f32(output); float32x4_t x1 = vld1q_f32(output + 4); x0 = vmulq_f32(x0, __inv_sum); x1 = vmulq_f32(x1, __inv_sum); vst1q_f32(output, x0); vst1q_f32(output + 4, x0); } #endif for (int i = 0; i < remain; ++i) { output[i] *= inv_sum; } } } } } // namespace math } // namespace operators } // namespace paddle_mobile #endif // SOFTMAX_OP