// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { std::vector axis_to_nhwc4d(const std::vector& axis) { CHECK_EQ(axis.size(), 4); std::vector new_axis(4, 0); const std::vector axis_map1 = {0, 2, 3, 1}; const std::vector axis_map2 = {0, 3, 1, 2}; for (size_t i = 0; i < new_axis.size(); ++i) { new_axis[i] = axis_map2[axis[axis_map1[i]]]; } return new_axis; } std::vector axis_to_nhw3d(const std::vector& axis) { CHECK_EQ(axis.size(), 3); std::vector new_axis(3, 0); const std::vector axis_map = {0, 2, 1}; for (size_t i = 0; i < new_axis.size(); ++i) { new_axis[i] = axis_map[axis[axis_map[i]]]; } new_axis.push_back(3); return new_axis; } std::vector infer_shape(const std::vector& x_dims, const std::vector& axis_nhwc) { std::vector out_dims(x_dims); for (size_t i = 0; i < out_dims.size(); ++i) { out_dims[i] = x_dims[axis_nhwc[i]]; } return out_dims; } int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Get input vars and op attributes auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims().Vectorize(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto axis = op_info->GetAttr>("axis"); std::vector axis_nhwc; if (axis.size() == 4) { axis_nhwc = axis_to_nhwc4d(axis); } else if (axis.size(0 == 3)) { axis_nhwc = axis_to_nhw3d(axis); } else { CHECK(0) << "Unsupport dim in mlu transpose"; } auto output_dims_nhwc = infer_shape(x_dims, axis_nhwc); output->Resize(output_dims_nhwc); auto output_tensor = graph->AddNode( out_var_name, output_dims_nhwc, CNML_TENSOR, CNML_NHWC, graph->FPType()); CHECK(graph->HasNode(x_var_name)); auto input_tensor = graph->GetNode(x_var_name); cnmlBaseOp_t transpose_op_{nullptr}; cnmlNdTransposeOpParam_t transpose_param{nullptr}; CNML_CALL(cnmlCreateNdTransposeOpParam( &transpose_param, axis_nhwc.data(), axis_nhwc.size())); // Use cnmlCreatexxxOpForward to create op. CNML_CALL(cnmlCreateNdTransposeProOp(&transpose_op_, input_tensor->mlu_tensor(), output_tensor->mlu_tensor(), transpose_param)); graph->FuseOp(transpose_op_); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(transpose, kMLU, paddle::lite::subgraph::mlu::TransposeConverter); REGISTER_SUBGRAPH_BRIDGE(transpose2, kMLU, paddle::lite::subgraph::mlu::TransposeConverter);