# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid import paddle.fluid.compiler as compiler import paddle.fluid.core as core import paddle.fluid.core.lite as lite import paddle.fluid.layers as layers import numpy as np import unittest from paddle.fluid.cxx_trainer import add_feed_fetch_op def _as_lodtensor(data, place): # single tensor case tensor = core.LoDTensor() tensor.set(data, place) return tensor data_label = [[ 0.753544, 0.772977, 0.646915, 0.747543, 0.528923, 0.0517749, 0.248678, 0.75932, 0.960376, 0.606618 ]] data_a = [[ 0.874445, 0.21623, 0.713262, 0.702672, 0.396977, 0.828285, 0.932995, 0.442674, 0.0321735, 0.484833, 0.045935, 0.21276, 0.556421, 0.131825, 0.285626, 0.741409, 0.257467, 0.975958, 0.444006, 0.114553 ]] data_loss = [0.9876687] class NaiveModelTest(unittest.TestCase): def test_model(self): start_prog = fluid.Program() main_prog = fluid.Program() start_prog.random_seed = 100 main_prog.random_seed = 100 with fluid.program_guard(main_prog, start_prog): a = fluid.layers.data(name="a", shape=[1, 20], dtype='float32') label = fluid.layers.data(name="label", shape=[10], dtype='float32') a1 = fluid.layers.fc(input=a, size=10, act=None, bias_attr=False) cost = fluid.layers.square_error_cost(a1, label) avg_cost = fluid.layers.mean(cost) optimizer = fluid.optimizer.SGD(learning_rate=0.001) optimizer.minimize(avg_cost) x86_place = lite.Place(lite.TargetType.kX86, lite.PrecisionType.kFloat, lite.DataLayoutType.kNCHW, 0) host_place = lite.Place(lite.TargetType.kHost, lite.PrecisionType.kFloat, lite.DataLayoutType.kNCHW, 0) scope = lite.Scope() trainer = lite.CXXTrainer(scope, x86_place, [x86_place, host_place]) trainer.run_startup_program(start_prog.desc) cpu = fluid.core.CPUPlace() main_prog = add_feed_fetch_op( main_prog, feed=['a', 'label'], fetch_list={avg_cost}, scope=scope, place=cpu) # print(main_prog) exe = trainer.build_main_program_executor(main_prog.desc) feed_data = [ _as_lodtensor(np.array(data_a, object), cpu), _as_lodtensor(np.array(data_label, object), cpu) ] exe.run(feed_data) # print(np.array(exe.get_output(0).raw_tensor())) self.assertTrue( np.allclose( np.array(data_loss), np.array(exe.get_output(0).raw_tensor()), atol=1e-8), "lite result not equel to offline result") if __name__ == '__main__': unittest.main()