// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/softmax_op.h" #include #include "lite/backends/npu/bridge/registry.h" #include "lite/backends/npu/bridge/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace npu { namespace bridge { template void softmax_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); auto x_data = x->data(); auto out_data = out->mutable_data(); DDim x_dims = x->dims(); auto x_rank = x_dims.size(); int axis = op_info->GetAttr("axis"); if (axis < 0) { axis += x_rank; } int axis_size = x_dims[axis]; int outer_num = x_dims.Slice(0, axis).production(); int inner_num = x_dims.Slice(axis + 1, x_rank).production(); int compute_size = outer_num * inner_num; for (int i = 0; i < compute_size; i++) { int idx_inner = i % inner_num; int idx_outer = (i / inner_num) * axis_size; int start = idx_outer * inner_num + idx_inner; int offset; offset = start; dtype max_data = std::numeric_limits::lowest(); for (int j = 0; j < axis_size; j++) { max_data = x_data[offset] > max_data ? x_data[offset] : max_data; offset += inner_num; } offset = start; dtype sum_data = (dtype)0; for (int j = 0; j < axis_size; j++) { out_data[offset] = exp(x_data[offset] - max_data); sum_data += out_data[offset]; offset += inner_num; } offset = start; for (int j = 0; j < axis_size; j++) { out_data[offset] /= sum_data; offset += inner_num; } } } void test_softmax(int bs, int ic, int ih, int iw, int axis) { // prepare input&output variables Scope scope; std::string x_var_name = "x"; std::string out_var_name = "out"; std::string out_ref_var_name = "out_ref"; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize({bs, ic, ih, iw}); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("softmax"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("axis", axis); // create and convert op to NPU model, then run it on NPU auto op = CreateOp(opdesc, &scope); LauchOp(op, {x_var_name}, {out_var_name}); out_ref->CopyDataFrom(*out); // execute reference implementation and save to output tensor softmax_ref(op); // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2); } } TEST(NPUBridges, softmax) { for (auto bs : {1, 4, 7}) { for (auto ic : {1, 4, 7}) { for (auto ih : {1, 4, 7}) { for (auto iw : {1, 4, 7}) { for (auto axis : {-3, -1, 0, 1, 2, 3}) { // npu softmax exists bugs when axis is 2 and iw > 1 if (axis == 2 && iw > 1) continue; test_softmax(bs, ic, ih, iw, axis); } } } } } } } // namespace bridge } // namespace npu } // namespace lite } // namespace paddle USE_LITE_OP(softmax); USE_NPU_BRIDGE(softmax);