// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/scale_op.h" #include "ai_ddk_lib/include/graph/buffer.h" #include "ai_ddk_lib/include/graph/graph.h" #include "ai_ddk_lib/include/graph/model.h" #include "ai_ddk_lib/include/graph/op/all_ops.h" #include "ai_ddk_lib/include/graph/operator.h" #include "ai_ddk_lib/include/graph/operator_reg.h" #include "lite/backends/npu/bridge/registry.h" #include "lite/backends/npu/bridge/utils.h" namespace paddle { namespace lite { namespace npu { namespace bridge { node_map_type ScaleConverter(const std::shared_ptr scale_op, const node_map_type& inputs_map) { auto scope = scale_op->scope(); auto op_info = scale_op->op_info(); auto op_type = op_info->Type(); auto unique_op_type = UniqueName(op_type); LOG(INFO) << "Converting " + op_type + "..."; // get input, output and op attributes auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims().Vectorize(); CHECK_GE(x_dims.size(), 2); std::vector scale_bias_shape = {x_dims[1]}; float scale = op_info->GetAttr("scale"); float bias = op_info->GetAttr("bias"); bool bias_after_scale = op_info->GetAttr("bias_after_scale"); if (!bias_after_scale) { bias *= scale; } // create scale node and set input node from inputs_map auto scale_node = std::make_shared(unique_op_type); CHECK(inputs_map.count(x_var_name)); scale_node->set_input_x(*inputs_map.at(x_var_name)); OpList::Global().add(inputs_map.at(x_var_name)); OpList::Global().add(scale_node); // add filter node(fill with scale) auto filter_const_node = std::make_shared(unique_op_type + "/filter"); filter_const_node->set_attr_value( CreateTensorAndFillData(scale, scale_bias_shape)); scale_node->set_input_filter(*filter_const_node); OpList::Global().add(filter_const_node); // add bias node(fill with bias) if (fabs(bias) > 1e-6f) { auto bias_const_node = std::make_shared(unique_op_type + "/bias"); bias_const_node->set_attr_value( CreateTensorAndFillData(bias, scale_bias_shape)); scale_node->set_input_bias(*bias_const_node); scale_node->set_attr_has_bias_value(true); OpList::Global().add(bias_const_node); } scale_node->set_attr_axis(1); node_map_type outputs_map; outputs_map[op_info->Output("Out").front()] = scale_node; return outputs_map; } } // namespace bridge } // namespace npu } // namespace lite } // namespace paddle REGISTER_NPU_BRIDGE(scale, paddle::lite::npu::bridge::ScaleConverter);