// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "lite/api/paddle_place.h" #include "lite/core/scope.h" #include "lite/core/tensor.h" #include "lite/core/types.h" #include "lite/model_parser/base/apis.h" #include "lite/model_parser/cpp_desc.h" #include "lite/utils/all.h" /* * This file contains all the argument parameter data structure for operators. */ namespace paddle { namespace lite { namespace operators { struct ParamBase { public: virtual ~ParamBase() {} virtual const std::vector* input_tensor_ptrs() { return nullptr; } virtual std::vector* output_tensor_ptrs() { return nullptr; } protected: std::shared_ptr> input_tensor_ptrs_cache_{nullptr}; std::shared_ptr> output_tensor_ptrs_cache_{nullptr}; }; using param_t = Any; #define WITH_INT8_CONFIG \ bool enable_int8{false}; \ float input_scale{1.0f}; \ std::vector weight_scale{}; \ float output_scale{1.0f}; \ int bit_length{8}; /// ----------------------- Functional operators ------------------------------ struct FeedParam : ParamBase { std::vector* feed_list{}; lite::Tensor* out{}; int col; }; struct FetchParam : ParamBase { const lite::Tensor* input{}; std::vector* fetch_list{}; int col; }; // Helper op for lite framework struct IoCopyParam : ParamBase { const lite::Tensor* x{}; lite::Tensor* y{}; int process_type{0}; }; struct LayoutParam : ParamBase { const lite::Tensor* x{}; lite::Tensor* y{}; int process_type{0}; }; struct CalibParam : ParamBase { const lite::Tensor* input{}; lite::Tensor* output{}; float scale; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({input})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; struct SubgraphParam : ParamBase { std::vector input_names{}; std::vector output_names{}; std::vector input_data_names{}; std::vector output_data_names{}; int block_idx{-1}; std::shared_ptr program_desc{nullptr}; Scope* exec_scope{nullptr}; }; /// -------------------------- NN operators ------------------------------------ struct FcParam : ParamBase { lite::Tensor* input{nullptr}; lite::Tensor* w{nullptr}; lite::Tensor* bias{nullptr}; lite::Tensor* output{nullptr}; lite::DDim in_mat_dims; // original dims of input weight lite::DDim w_dims; int in_num_col_dims{1}; std::string activation_type{""}; bool padding_weights{false}; // for int8 WITH_INT8_CONFIG /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({input})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; struct SearchSeqFcParam : ParamBase { lite::Tensor* x{nullptr}; lite::Tensor* w{nullptr}; lite::Tensor* b{nullptr}; lite::Tensor* out{nullptr}; int out_size; }; // For Interpolate Op struct InterpolateParam : ParamBase { lite::Tensor* X{}; lite::Tensor* OutSize{}; lite::Tensor* Out{}; std::vector SizeTensor; lite::Tensor* Scale{}; float scale{0.f}; int out_h{-1}; int out_w{-1}; bool align_corners{true}; int align_mode{1}; std::string interp_method{"Nearest"}; DataLayoutType data_layout{DATALAYOUT(kNCHW)}; }; // For Mul Op struct MulParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* y{}; lite::Tensor* output{}; int x_num_col_dims{1}; int y_num_col_dims{1}; // for int8 WITH_INT8_CONFIG /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x, y})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; struct MulGradParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* y{}; const lite::Tensor* output_grad{}; lite::Tensor* x_grad{}; lite::Tensor* y_grad{}; int x_num_col_dims{1}; int y_num_col_dims{1}; }; // For ReduceMean Op struct ReduceMeanParam : ParamBase { lite::Tensor* X{}; lite::Tensor* Out{}; std::vector dim; bool keep_dim{false}; }; // For Stack Op struct StackParam : ParamBase { std::vector X; lite::Tensor* Out{}; int axis{0}; }; // For Power Op struct PowerParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; float scale{}; float shift{}; float power{}; }; // For Pow Op struct PowParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; float factor{1.}; }; // For Sign Op struct SignParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct ShuffleChannelParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; int group; }; // For Yolobox struct YoloBoxParam : ParamBase { lite::Tensor* X{}; lite::Tensor* ImgSize{}; lite::Tensor* Boxes{}; lite::Tensor* Scores{}; std::vector anchors{}; int class_num{0}; float conf_thresh{0.f}; int downsample_ratio{0}; }; // For Scale Op struct ScaleParam : ParamBase { lite::Tensor* x{}; lite::Tensor* output{}; float scale{1.}; float bias{}; bool bias_after_scale{true}; std::string activation_type{""}; bool fuse_relu{false}; float alpha{6.}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; // For Scatter OP struct ScatterParam : ParamBase { lite::Tensor* x{}; lite::Tensor* indexs{}; lite::Tensor* updates{}; lite::Tensor* output{}; bool overwrite{true}; }; // For Softmax op struct SoftmaxParam : ParamBase { lite::Tensor* x{}; lite::Tensor* output{}; int axis{-1}; bool use_cudnn{true}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; // For Reshape and Reshape2 Op struct ReshapeParam : ParamBase { const lite::Tensor* x{}; std::vector shape_tensor_vct{}; const lite::Tensor* shape_tensor{}; std::vector shape_vct{}; lite::Tensor* output{}; lite::Tensor* xshape{}; bool inplace{false}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; // For Concat op struct ConcatParam : ParamBase { std::vector x{}; lite::Tensor* output{}; int axis{0}; lite::Tensor* axis_tensor{}; // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { std::vector vec; for (auto in : x) { vec.push_back(in); } input_tensor_ptrs_cache_.reset(new std::vector(vec)); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; /// ----------------------- activation operators ---------------------- struct ActivationParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity}; bool has_active{false}; float Leaky_relu_alpha{0}; // leaky_relu param float Relu_clipped_coef{6}; // relu_clipped param std::string Prelu_mode{ "channel"}; // prelu param, can be "all", "channel" or "element" lite::Tensor* Prelu_alpha{}; // prelu param float Swish_beta; // swish param // hard_sigmoid param float hard_sigmoid_slope{0.2f}; float hard_sigmoid_offset{0.5f}; // hard_swish param float hard_swish_threshold{6.0}; float hard_swish_scale{6.0}; float hard_swish_offset{3.0}; // thresholded_relu float relu_threshold{1.0f}; // elu float Elu_alpha{1.0f}; // relu6 float threshold{6.0f}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; struct ActivationGradParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Out{}; // for backward lite::Tensor* X_grad{}; const lite::Tensor* Out_grad{}; }; // For Convolution op struct ConvParam : ParamBase { lite::Tensor* x{}; lite::Tensor* filter{}; lite::Tensor* bias{nullptr}; lite::Tensor* residualData{nullptr}; lite::Tensor* output{}; std::vector strides{1, 1}; /* paddings type change * from std::vector to std::shared_ptr> * to support dynamically modify padding * let kernel param and operator param Synchronous update */ std::shared_ptr> paddings; int groups{1}; /* dilations type change * from std::vector to std::shared_ptr> * to support dynamically modify padding * let kernel param and operator param Synchronous update */ std::shared_ptr> dilations; bool fuse_relu_before_depthwise_conv{false}; bool use_mkldnn{false}; bool fuse_relu{false}; // only used in mkldnn kernel bool use_quantizer{ false}; // set true for op that should be quantized, only used for cpu bool fuse_residual_connection{false}; float scale_in{1.0f}; // only used with mkl-dnn int8 float scale_out{1.0f}; // only used with mkl-dnn int8 float scale_in_eltwise{1.0f}; // only used with mkl-dnn int8 float scale_weights{1.0f}; // only used with mkl-dnn int8 bool force_fp32_output{false}; // only used in mkl-dnn int8 std::string data_format{"Anylayout"}; // for activation ActivationParam activation_param; // support var_length or not bool var_length{false}; // only used in conv_transpose. std::vector output_size; // for int8 WITH_INT8_CONFIG /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; // For BatchNorm op struct BatchNormParam : ParamBase { lite::Tensor* x{}; lite::Tensor* bias{}; lite::Tensor* scale{}; lite::Tensor* mean{}; lite::Tensor* variance{}; lite::Tensor* y{}; lite::Tensor* mean_out{}; lite::Tensor* variance_out{}; lite::Tensor* saved_mean{}; lite::Tensor* saved_variance{}; bool is_test{true}; bool use_global_stats{false}; float epsilon; float momentum; DataLayoutType data_layout{DATALAYOUT(kNCHW)}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({y})); } return output_tensor_ptrs_cache_.get(); } }; // For Pooling op struct PoolParam : ParamBase { lite::Tensor* x{}; lite::Tensor* output{}; std::string pooling_type{""}; std::vector ksize{}; bool global_pooling{ false}; // if true, knernel size and paddings will be ignored std::vector strides{1, 1}; /* paddings type change * from std::vector to std::shared_ptr> * to support dynamically modify padding * let kernel param and operator param Synchronous update */ std::shared_ptr> paddings; bool exclusive{true}; bool adaptive{false}; bool ceil_mode{false}; bool use_quantizer{false}; std::string data_format{"AnyLayout"}; // for int8 WITH_INT8_CONFIG /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; // For Dropout op struct DropoutParam : ParamBase { const lite::Tensor* x{}; lite::Tensor* output{}; lite::Tensor* mask{}; float dropout_prob{.5f}; bool is_test{false}; bool fix_seed{false}; int seed{0}; std::string dropout_implementation{"downgrade_in_infer"}; }; // For Split op struct SplitParam : ParamBase { lite::Tensor* x{}; std::vector output{}; lite::Tensor* axis_tensor; std::vector sections_tensor_list{}; int axis{-1}; int num{0}; std::vector sections; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; // For Transpose op struct TransposeParam : ParamBase { const lite::Tensor* x{}; lite::Tensor* output{}; lite::Tensor* xshape{}; std::vector axis; bool use_mkldnn{false}; std::string data_format{"AnyLayout"}; /////////////////////////////////////////////////////////////////////////////////// // // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; /// ----------------------- element wise operators ---------------------- struct ElementwiseParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; int axis{-1}; // for broadcasting. // for int8 WITH_INT8_CONFIG float x_input_scale{1.0}; float y_input_scale{1.0}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X, Y})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; struct ElementwiseGradParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; const lite::Tensor* OutGrad{}; lite::Tensor* XGrad{}; lite::Tensor* YGrad{}; int axis{-1}; // for broadcasting. }; struct FusionElementwiseActivationParam : public ElementwiseParam { std::string act_type; }; struct FusionElementwiseActivationGradParam : public ElementwiseGradParam { std::string act_type; }; /// ----------------------- mean operators ---------------------- struct MeanParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct MeanGradParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Out_grad{}; // for backward lite::Tensor* X_grad{}; }; /// ----------------------- fill_constant operators ---------------------- struct FillConstantParam : ParamBase { int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; std::vector shape{}; lite::Tensor* shape_tensor{nullptr}; std::vector shape_tensor_list{}; float value{0.0f}; // useless for x86, keep it for compatibility bool force_cpu{false}; lite::Tensor* out{}; }; struct FillConstantBatchSizeLikeParam : ParamBase { const lite::Tensor* input{nullptr}; lite::Tensor* out{nullptr}; std::vector shape{}; int input_dim_idx{0}; int output_dim_idx{0}; int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; float value{0.0f}; // useless for x86, keep it for compatibility bool force_cpu{false}; }; // struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* in_scale{}; const lite::Tensor* in_accum{}; const lite::Tensor* in_state{}; lite::Tensor* out{}; lite::Tensor* out_scale{}; lite::Tensor* out_state{}; lite::Tensor* out_accum{}; int bit_length; bool is_test{true}; float moving_rate{0.9f}; }; struct FakeDequantizeMaxAbsParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* in_scale{}; lite::Tensor* out{}; float max_range; }; struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase { const lite::Tensor* x{}; std::vector scale_tensors{}; lite::Tensor* out{}; std::vector quant_bits; }; struct FakeQuantDequantAbsMaxParam : ParamBase { const lite::Tensor* x{}; lite::Tensor* out{}; lite::Tensor* out_scale{}; int bit_length; }; /// ----------------------- sgd operators ---------------------- struct SGDParam : ParamBase { int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; const lite::Tensor* Param{}; const lite::Tensor* LearningRate{}; const lite::Tensor* Grad{}; lite::Tensor* ParamOut{}; }; /// ----------------------- uniform_random operators ---------------------- struct UniformRandomParam : ParamBase { const lite::Tensor* X{nullptr}; std::vector shape{}; float min{-1.0f}; float max{1.0f}; int seed{0}; int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; lite::Tensor* Out{}; }; /// ----------------------- negative operators -------------- struct NegativeParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; }; /// ----------------------- pad2d operators ---------------------- struct Pad2dParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector paddings{0, 0, 0, 0}; std::string mode{"constant"}; float pad_value = 0.f; std::string data_format{"NCHW"}; }; /// ----------------------- Crop operators ---------------------- struct CropParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector offsets; std::vector shape; }; ///----------------------- argmax operators ---------------------- struct ArgmaxParam : ParamBase { lite::Tensor* X{}; lite::Tensor* Out{}; int Axis{0}; }; ///----------------------- axpy operators ---------------------- struct AxpyParam : ParamBase { lite::Tensor* Scale{}; lite::Tensor* X{}; lite::Tensor* Bias{}; lite::Tensor* Out{}; }; /// ----------------------- GRU unit operators ----------------------f struct GRUUnitParam : ParamBase { enum ActType { identity, sigmoid, tanh, relu }; const lite::Tensor* input{nullptr}; const lite::Tensor* hidden_prev{nullptr}; const lite::Tensor* weight{nullptr}; const lite::Tensor* bias{nullptr}; lite::Tensor* gate{nullptr}; lite::Tensor* reset_hidden_prev{nullptr}; lite::Tensor* hidden{nullptr}; int gate_activation{ActType::sigmoid}; int activation{ActType::tanh}; bool origin_mode{false}; }; /// ------------------------------ lrn operators ------------------------------ struct LrnParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; int n{5}; float alpha{1e-4f}; float beta{0.75f}; float k{1.f}; std::string norm_region{"AcrossChannels"}; }; /// ----------------------- decode_bboxes operators ---------------------- struct DecodeBboxesParam : ParamBase { const lite::Tensor* loc_data{}; const lite::Tensor* prior_data{}; lite::Tensor* bbox_data{}; int batch_num; int num_priors; int num_loc_classes{0}; int background_label_id{0}; bool share_location{true}; bool variance_encoded_in_target; // code_type: corner, cente_size, corner_size std::string code_type; }; /// ----------------------- box_coder operators ---------------------- struct BoxCoderParam : ParamBase { const lite::Tensor* prior_box{}; const lite::Tensor* prior_box_var{}; const lite::Tensor* target_box{}; lite::Tensor* proposals{}; // code_type: encode_center_size and decode_center_size std::string code_type{"encode_center_size"}; bool box_normalized{true}; int axis{0}; std::vector variance{}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector( {prior_box, prior_box_var, target_box})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset( new std::vector({proposals})); } return output_tensor_ptrs_cache_.get(); } }; /// ----------------------- multiclass_nms operators ---------------------- struct MulticlassNmsParam : ParamBase { const lite::Tensor* bboxes{}; const lite::Tensor* scores{}; lite::Tensor* out{}; lite::Tensor* index{}; int background_label{0}; float score_threshold{}; int nms_top_k{}; float nms_threshold{0.3f}; float nms_eta{1.0f}; int keep_top_k; bool normalized{true}; }; /// ----------------------- priorbox operators ---------------------- struct PriorBoxParam : ParamBase { lite::Tensor* input{}; lite::Tensor* image{}; lite::Tensor* boxes{}; lite::Tensor* variances{}; bool flip; bool clip; std::vector min_sizes; std::vector max_sizes; std::vector aspect_ratios; std::vector variances_; int img_w{0}; int img_h{0}; float step_w{0}; float step_h{0}; float offset{0.5}; int prior_num{0}; // priortype: prior_min, prior_max, prior_com std::vector order; bool min_max_aspect_ratios_order{false}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset( new std::vector({input, image})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset( new std::vector({boxes, variances})); } return output_tensor_ptrs_cache_.get(); } }; struct DensityPriorBoxParam : public PriorBoxParam { std::vector fixed_sizes; std::vector fixed_ratios; std::vector density_sizes; }; /// ----------------------- GRU operators ----------------------f struct GRUParam : ParamBase { const lite::Tensor* input{nullptr}; const lite::Tensor* h0{nullptr}; const lite::Tensor* weight{nullptr}; const lite::Tensor* bias{nullptr}; lite::Tensor* batch_gate{nullptr}; lite::Tensor* batch_reset_hidden_prev{nullptr}; lite::Tensor* batch_hidden{nullptr}; lite::Tensor* hidden{nullptr}; std::string gate_activation{"sigmoid"}; std::string activation{"tanh"}; bool is_reverse{false}; bool origin_mode{false}; }; /// ----------------------- BeamSearchDecode operators ----------------------f struct BeamSearchDecodeParam : ParamBase { std::vector* ids{nullptr}; std::vector* scores{nullptr}; lite::Tensor* sentence_ids{nullptr}; lite::Tensor* sentence_scores{nullptr}; int beam_size; int end_id; }; /// ----------------------- LookupTable operators ----------------------f struct LookupTableParam : ParamBase { const lite::Tensor* W{nullptr}; const lite::Tensor* Ids{nullptr}; lite::Tensor* Out{nullptr}; int64_t padding_idx{-1}; }; struct LookupTableDequantParam : ParamBase { lite::Tensor* W{nullptr}; lite::Tensor* Ids{nullptr}; lite::Tensor* Out{nullptr}; int64_t padding_idx{-1}; }; struct Im2SequenceParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; std::vector kernels{3, 3}; std::vector strides{1, 1}; std::vector paddings{0, 0, 0, 0}; std::vector out_strides{1, 1}; }; struct SequenceSoftmaxParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; /////////////////////////////////////////////////////////////////////////////////// // // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; struct NormParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* Norm{}; int axis{1}; float epsilon{1e-10f}; }; struct LayerNormParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Scale{}; const lite::Tensor* Bias{}; lite::Tensor* Y{}; lite::Tensor* Mean{}; lite::Tensor* Variance{}; int begin_norm_axis{1}; float epsilon{1e-5f}; }; struct LogicalParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; }; struct CompareParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; bool force_cpu{0}; int axis{-1}; lite::Tensor* Out{}; }; struct WhileParam : ParamBase { Tensor* cond{}; int block_idx{-1}; std::shared_ptr program_desc{nullptr}; Scope* exec_scope{nullptr}; }; struct TopkParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* Indices{}; int K{1}; }; struct IncrementParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; float step{1}; }; struct WriteToArrayParam : ParamBase { const lite::Tensor* X{nullptr}; const lite::Tensor* I{nullptr}; std::vector* Out{nullptr}; }; struct ReadFromArrayParam : ParamBase { const std::vector* X{nullptr}; const lite::Tensor* I{nullptr}; lite::Tensor* Out{nullptr}; }; struct BeamSearchParam : ParamBase { const lite::Tensor* pre_ids{}; const lite::Tensor* pre_scores{}; const lite::Tensor* ids{}; const lite::Tensor* scores{}; lite::Tensor* selected_ids{}; lite::Tensor* selected_scores{}; lite::Tensor* parent_idx{}; int level; int beam_size; int end_id; bool is_accumulated; }; struct SequencePoolParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* MaxIndex{}; std::string pool_type{"AVERAGE"}; #ifdef LITE_WITH_X86 float pad_value{0.0}; #endif }; struct SequenceConvParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Filter{}; lite::Tensor* Out{}; int contextStart{0}; int contextStride{1}; int contextLength; }; struct SequencePoolConcatParam : ParamBase { std::vector X{}; lite::Tensor* Out{}; std::vector pool_type{}; }; struct SequencePoolGradParam : ParamBase { const lite::Tensor* X{}; std::string pool_type{"AVERAGE"}; #ifdef LITE_WITH_X86 float pad_value{0.0}; #endif // for backward const lite::Tensor* Out_Grad{}; const lite::Tensor* MaxIndex_Grad{}; lite::Tensor* X_Grad{}; }; struct SearchGroupPaddingParam : ParamBase { lite::Tensor* x{}; lite::Tensor* out_emb_padding{}; lite::Tensor* out_new{}; lite::Tensor* out_padding{}; int pad_id; }; struct SequenceReshapeParam : ParamBase { lite::Tensor* x{}; lite::Tensor* output{}; int new_dim; }; struct SequenceExpandParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; int ref_level{-1}; }; struct SequencePadParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* PadValue{}; lite::Tensor* Out{}; lite::Tensor* Length{}; int padded_length{-1}; }; struct SequenceUnpadParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Length{}; lite::Tensor* Out{}; }; struct SequenceMaskParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* MaxLenTensor{nullptr}; lite::Tensor* Y{}; int maxlen{-1}; int out_dtype; }; struct SequenceExpandAsParam : ParamBase { const lite::Tensor* x{nullptr}; const lite::Tensor* y{nullptr}; lite::Tensor* out{nullptr}; }; struct SequenceReverseParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct SequenceConcatParam : ParamBase { std::vector X{}; lite::Tensor* Out{}; }; struct AttentionPaddingMaskParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; int pad_id; float mask; lite::Tensor* Out{}; lite::Tensor* pad_begin{}; }; struct SequenceArithmeticParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; int op_type{1}; lite::Tensor* Out{}; }; struct ReduceMaxParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector dim{}; bool keep_dim{false}; }; struct LodResetParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; std::vector target_lod; bool append; }; struct IsEmptyParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct ReduceParam : ParamBase { lite::Tensor* x{}; lite::Tensor* output{}; std::vector dim{0}; bool keep_dim{false}; bool reduce_all{false}; }; struct VarConv2DParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* ROW{}; const lite::Tensor* COLUMN{}; const lite::Tensor* W{}; lite::Tensor* Out{}; lite::Tensor* Col{}; int input_channel; int output_channel; int stride_h; int stride_w; int kernel_h; int kernel_w; bool fuse_relu{false}; #ifdef LITE_WITH_XPU bool __xpu__float_to_fix{false}; // Is W already converted to int16/int8 float __xpu__w_max{0.0f}; // Abs max in W #endif }; /// ----------------------- shape operators ---------------------- struct ShapeParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct CastParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; int out_dtype{2}; int in_dtype{2}; }; struct SliceParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector axes{}; std::vector starts{}; std::vector ends{}; std::vector decrease_axis{}; std::vector infer_flags{}; std::vector StartsTensorList{}; std::vector EndsTensorList{}; lite::Tensor* StartsTensor{nullptr}; lite::Tensor* EndsTensor{nullptr}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; struct AffineChannelParam : ParamBase { const lite::Tensor* X{}; // X is 4D tensor const lite::Tensor* Scale{}; const lite::Tensor* Bias{}; std::string data_layout{"NCHW"}; // optional string from: NHWC, NCHW. lite::Tensor* Out{}; }; struct AffineGridParam : ParamBase { const lite::Tensor* X{}; // Theta:shape {?, 2, 3} std::vector output_shape; const lite::Tensor* OutputShape; lite::Tensor* Out{}; }; struct AnchorGeneratorParam : ParamBase { const lite::Tensor* Input{}; std::vector anchor_sizes{}; std::vector aspect_ratios{}; std::vector stride{}; std::vector variances{{0.1f, 0.1f, 0.2f, 0.2f}}; float offset{0.5f}; lite::Tensor* Anchors{}; lite::Tensor* Variances{}; }; struct GenerateProposalsParam : ParamBase { // inputs const lite::Tensor* Scores{}; const lite::Tensor* BboxDeltas{}; const lite::Tensor* ImInfo{}; lite::Tensor* Anchors{}; lite::Tensor* Variances{}; // attrs int pre_nms_topN{6000}; int post_nms_topN{1000}; float nms_thresh{0.5f}; float min_size{0.1f}; float eta{1.0f}; // outputs lite::Tensor* RpnRois{}; lite::Tensor* RpnRoiProbs{}; }; /// ----------------------- squeeze operators ---------------------- struct SqueezeParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* XShape{}; std::vector axes{}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; struct UnsqueezeParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* XShape{}; std::vector axes{}; const lite::Tensor* axes_tensor{}; std::vector axes_tensor_vct{}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; /// ----------------------- expand operators ---------------------- struct ExpandParam : ParamBase { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector expand_times{}; }; /// ----------------------- expand as operators ---------------------- struct ExpandAsParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Target{}; lite::Tensor* Out{}; }; /// ----------------------- matmul operators ---------------------- struct MatMulParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; bool transpose_X{false}; bool transpose_Y{false}; float alpha{1.0f}; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({X, Y})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({Out})); } return output_tensor_ptrs_cache_.get(); } }; struct GatherParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Index{}; lite::Tensor* Out{}; }; /// ----------------------- assign operators ----------------------- struct AssignParam : ParamBase { // for tensor const lite::Tensor* X{nullptr}; lite::Tensor* Out{nullptr}; // for tensor_array const std::vector* X_array{nullptr}; std::vector* Out_array{nullptr}; }; /// ----------------------- roi_align operators ----------------------- struct RoiAlignParam : ParamBase { lite::Tensor* X{}; lite::Tensor* ROIs{}; lite::Tensor* Out{}; float spatial_scale{1.0}; int pooled_height{1}; int pooled_width{1}; int sampling_ratio{-1}; }; /// ----------------------- box_clip operators ----------------------- struct BoxClipParam : ParamBase { const lite::Tensor* Input{}; const lite::Tensor* ImInfo{}; lite::Tensor* Output{}; }; struct RangeParam : ParamBase { const lite::Tensor* Start; const lite::Tensor* End; const lite::Tensor* Step; lite::Tensor* Out; }; /// ----------------------- assign_value operators ----------------------- struct AssignValueParam : ParamBase { std::vector shape{}; int dtype{}; std::vector fp32_values{}; std::vector int32_values{}; std::vector int64_values{}; std::vector bool_values{}; lite::Tensor* Out{}; }; /// --------------- sequence_topk_avg_pooling operators ------------------ struct SequenceTopkAvgPoolingParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* ROW{}; const lite::Tensor* COLUMN{}; lite::Tensor* Out{}; lite::Tensor* pos{}; int channel_num{}; std::vector topks{}; }; /// --------------- topk_pooling operators ------------------ struct TopkPoolingParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; int top_k{1}; int feat_map_num{1}; }; /// --------------- search_fc operators ------------------ struct SearchFcParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* W{}; const lite::Tensor* b{}; lite::Tensor* Out{}; int out_size{}; bool fuse_relu{false}; #ifdef LITE_WITH_XPU bool __xpu__float_to_fix{false}; // Is W already converted to int16/int8 float __xpu__w_max{0.0f}; // Abs max in W #endif }; /// --------------------- match_matrix_tensor operators -------------------- struct MatchMatrixTensorParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* y{}; const lite::Tensor* w{}; lite::Tensor* out{}; lite::Tensor* tmp{}; int dim_t; bool fuse_relu{false}; #ifdef LITE_WITH_XPU bool __xpu__float_to_fix{false}; // Is w already converted to int16/int8 float __xpu__w_max{0.0f}; // Abs max in w #endif }; /// --------------------- search_seq_depadding operators -------------------- struct SearchSeqDepaddingParam : ParamBase { const lite::Tensor* pad{}; const lite::Tensor* src{}; lite::Tensor* out{}; }; /// --------------------- search_grnn operators -------------------- struct SearchGrnnParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* wi{}; const lite::Tensor* wh{}; int num_input; int num_hidden; lite::Tensor* out{}; lite::Tensor* tmp_buffer{}; lite::Tensor* idx_sorted_by_width{}; lite::Tensor* layout_input{}; #ifdef LITE_WITH_XPU bool __xpu__float_to_fix{false}; // Is wi/wh already converted to int16/int8 std::vector __xpu__wi_max; // Abs max in wi std::vector __xpu__wh_max; // Abs max in wh #endif }; struct SplitLodTensorParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* mask{}; lite::Tensor* out_true{}; lite::Tensor* out_false{}; int level{}; }; struct MergeLodTensorParam : ParamBase { const lite::Tensor* x{}; const lite::Tensor* mask{}; const lite::Tensor* in_true{}; const lite::Tensor* in_false{}; lite::Tensor* out{}; int level{}; }; struct ConditionalBlockParam : ParamBase { const lite::Tensor* cond{}; std::vector inputs{}; std::vector outs{}; int block_idx{-1}; std::shared_ptr program_desc{nullptr}; Scope* exec_scope{nullptr}; bool is_scalar_condition{}; }; struct CollectFpnProposalsParam : ParamBase { std::vector multi_level_rois{}; std::vector multi_level_scores{}; lite::Tensor* fpn_rois{}; int post_nms_topN{}; }; struct DistributeFpnProposalsParam : ParamBase { const lite::Tensor* fpn_rois{}; std::vector multi_fpn_rois{}; lite::Tensor* restore_index{}; int min_level{}; int max_level{}; int refer_level{}; int refer_scale{}; }; /// --------------------- instance_norm operators -------------------- struct InstanceNormParam : ParamBase { lite::Tensor* x{}; lite::Tensor* out{}; lite::Tensor* bias{}; lite::Tensor* scale{}; lite::Tensor* saved_mean{}; lite::Tensor* saved_variance{}; float epsilon; }; /// --------------------- group_norm operators -------------------- struct GroupNormParam : ParamBase { lite::Tensor* x{}; lite::Tensor* out{}; lite::Tensor* bias{}; lite::Tensor* scale{}; lite::Tensor* saved_mean{}; lite::Tensor* saved_variance{}; float epsilon; int groups; int channels; }; /// --------------------- grid sampler operators -------------------- struct GridSamplerParam : ParamBase { lite::Tensor* x{}; lite::Tensor* out{}; lite::Tensor* grid{}; }; struct LstmParam : ParamBase { lite::Tensor* Input{}; lite::Tensor* Weight{}; lite::Tensor* Bias{}; lite::Tensor* Hidden{}; lite::Tensor* Cell{}; lite::Tensor* BatchGate{}; lite::Tensor* BatchCellPreAct{}; lite::Tensor* H0{nullptr}; lite::Tensor* C0{nullptr}; bool use_peepholes; bool is_reverse; std::string gate_activation; std::string cell_activation; std::string candidate_activation; }; struct CrfDecodingParam : ParamBase { lite::Tensor* emission{}; lite::Tensor* transition{}; lite::Tensor* label{}; lite::Tensor* length{}; lite::Tensor* viterbi_path{}; }; struct CtcAlignParam : ParamBase { lite::Tensor* input{}; lite::Tensor* input_length{}; lite::Tensor* output{}; lite::Tensor* output_length{}; int blank{0}; bool merge_repeated{true}; int padding_value{0}; }; struct XPUResNet50Param : ParamBase { lite::Tensor* input{}; std::vector filter; std::vector bias; std::vector max_filter; lite::Tensor* output{}; }; struct XPUMultiEncoderParam : ParamBase { lite::Tensor* input{}; std::vector fc_weight; std::vector fc_bias; std::vector ln_scale; std::vector ln_bias; lite::Tensor* fc_weight_max{}; lite::Tensor* mask{}; lite::Tensor* output{}; int n_layers{}; int head_num{}; int size_per_head{}; std::string act_type{}; std::string precision{}; bool enable_qkv_fusion{false}; }; struct XPUEmbeddingWithEltwiseAddParam : ParamBase { std::vector Ids; std::vector Tables; lite::Tensor* Out{}; int64_t padding_idx{-1}; }; struct XPUFcParam : ParamBase { lite::Tensor* input{nullptr}; lite::Tensor* w{nullptr}; lite::Tensor* bias{nullptr}; lite::Tensor* output{nullptr}; int in_num_col_dims{1}; lite::DDim in_mat_dims; float w_max{0.0f}; bool transpose_w{true}; std::string activation_type{""}; }; struct XPUResNetCbamParam : ParamBase { lite::Tensor* input{}; std::vector filter; std::vector bias; std::vector max_filter; lite::Tensor* output{}; float pool_p{1.0f}; }; struct XPUMmdnnSearchAttentionParam : ParamBase { lite::Tensor* X{}; lite::Tensor* W{}; lite::Tensor* b{}; lite::Tensor* Out{}; float W_max{0.0f}; int pad_id{0}; float alpha0{1.0f}; float alpha1{1.0f}; float mask{1.0f}; }; struct XPUMmdnnBidEmbGrnnAttParam : ParamBase { lite::Tensor* id0{}; lite::Tensor* id1{}; lite::Tensor* emb_tbl{}; lite::Tensor* grnn_fw_wh{}; lite::Tensor* grnn_fw_wi{}; lite::Tensor* grnn_rv_wh{}; lite::Tensor* grnn_rv_wi{}; lite::Tensor* att_fc_w{}; lite::Tensor* att_fc_b{}; std::vector grnn_fw_wh_maxs; std::vector grnn_fw_wi_maxs; std::vector grnn_rv_wh_maxs; std::vector grnn_rv_wi_maxs; float att_fc_w_max{0.0f}; lite::Tensor* grnn_fw_pool_out{}; lite::Tensor* grnn_rv_pool_out{}; lite::Tensor* att_pool_out{}; lite::Tensor* concat_3in1_out{}; lite::Tensor* emb_fw_out{}; }; struct XPUMmdnnBidEmbGrnnAttParam2 : ParamBase { lite::Tensor* id0{}; lite::Tensor* id1{}; lite::Tensor* emb_tbl{}; lite::Tensor* grnn_fw_wh{}; lite::Tensor* grnn_fw_wi{}; lite::Tensor* grnn_rv_wh{}; lite::Tensor* grnn_rv_wi{}; lite::Tensor* att_fc_w{}; lite::Tensor* att_fc_b{}; std::vector grnn_fw_wh_maxs; std::vector grnn_fw_wi_maxs; std::vector grnn_rv_wh_maxs; std::vector grnn_rv_wi_maxs; float att_fc_w_max{0.0f}; lite::Tensor* emb0_out{}; lite::Tensor* grnn_fw_pool_out{}; lite::Tensor* grnn_rv_pool_out{}; lite::Tensor* att_pool_out{}; lite::Tensor* concat_3in1_out{}; lite::Tensor* emb_fw_out{}; }; struct XPUMmdnnBidEmbAttParam : ParamBase { lite::Tensor* id0{}; lite::Tensor* id1{}; lite::Tensor* emb_tbl{}; lite::Tensor* att_fc_w{}; lite::Tensor* att_fc_b{}; float att_fc_w_max{0.0f}; lite::Tensor* att_pool_out{}; lite::Tensor* emb_fw_out{}; }; struct XPUMmdnnMatchConvTopkParam : ParamBase { lite::Tensor* input_x{}; lite::Tensor* input_y{}; lite::Tensor* input_w{}; lite::Tensor* conv_w{}; float input_w_max{0.0f}; float conv_w_max{0.0f}; std::vector topks; int output_channel{0}; int channel_num{0}; int dim_t{0}; lite::Tensor* topk_out{}; }; struct XPUMmdnnMergeAllParam : ParamBase { std::vector concat_7in1_x; std::vector concat_topk_x; lite::Tensor* grnn_fw_wh{}; lite::Tensor* grnn_fw_wi{}; lite::Tensor* grnn_rv_wh{}; lite::Tensor* grnn_rv_wi{}; lite::Tensor* fc0_w{}; lite::Tensor* fc0_b{}; lite::Tensor* fc1_w{}; lite::Tensor* fc1_b{}; lite::Tensor* fc2_w{}; lite::Tensor* fc2_b{}; std::vector grnn_fw_wh_maxs; std::vector grnn_fw_wi_maxs; std::vector grnn_rv_wh_maxs; std::vector grnn_rv_wi_maxs; float fc0_w_max{0.0f}; float fc1_w_max{0.0f}; float fc2_w_max{0.0f}; lite::Tensor* out{}; }; struct XPUConv2dParam : ParamBase { lite::Tensor* Input{nullptr}; lite::Tensor* Filter{nullptr}; lite::Tensor* InputMax{nullptr}; lite::Tensor* FilterMax{nullptr}; lite::Tensor* Bias{nullptr}; lite::Tensor* Branch{nullptr}; lite::Tensor* Output{nullptr}; lite::Tensor* OutputMax{nullptr}; int groups{1}; std::string act_type{""}; std::string filter_type{""}; std::vector strides; std::shared_ptr> paddings; std::shared_ptr> dilations; }; struct XPUSfaHeadParam : ParamBase { lite::Tensor* input{nullptr}; lite::Tensor* output{nullptr}; std::string op_type{""}; }; // For DeformableConvolution op struct DeformableConvParam : ParamBase { lite::Tensor* x{}; lite::Tensor* offset{}; lite::Tensor* mask{}; lite::Tensor* output{}; int deformable_groups{1}; int im2col_step{1}; bool modulated{true}; // True-v2 False-v1 std::string data_format{"Anylayout"}; // convolution parameter ConvParam conv_param; // support var_length or not bool var_length{false}; // only used in conv_transpose. std::vector output_size; /////////////////////////////////////////////////////////////////////////////////// // get a vector of input tensors const std::vector* input_tensor_ptrs() override { if (!input_tensor_ptrs_cache_) { input_tensor_ptrs_cache_.reset(new std::vector({x})); } return input_tensor_ptrs_cache_.get(); } // get a vector of output tensors std::vector* output_tensor_ptrs() override { if (!output_tensor_ptrs_cache_) { output_tensor_ptrs_cache_.reset(new std::vector({output})); } return output_tensor_ptrs_cache_.get(); } }; struct PixelShuffleParam : ParamBase { lite::Tensor* x{nullptr}; lite::Tensor* output{nullptr}; int upscale_factor{1}; }; struct RetinanetDetectionOutputParam : ParamBase { std::vector bboxes{}; std::vector scores{}; std::vector anchors{}; Tensor* im_info{}; Tensor* out{}; float score_threshold{}; int nms_top_k{}; float nms_threshold{}; float nms_eta{}; int keep_top_k{}; }; struct WhereIndexParam : ParamBase { const lite::Tensor* input{nullptr}; lite::Tensor* output{nullptr}; }; struct ClipParam : ParamBase { Tensor* x{}; Tensor* min_tensor{}; Tensor* max_tensor{}; Tensor* out{}; float min{}; float max{}; }; struct PrintParam : ParamBase { const lite::Tensor* in{}; lite::Tensor* out{}; std::string name; int first_n{-1}; std::string message; int summarize{20}; bool print_tensor_name{true}; bool print_tensor_type{true}; bool print_tensor_shape{true}; bool print_tensor_lod{true}; bool print_tensor_layout{true}; std::string print_phase; bool is_forward{true}; }; struct OneHotParam : ParamBase { const lite::Tensor* X{}; const lite::Tensor* depth_tensor{nullptr}; lite::Tensor* Out{}; int depth; int dtype; bool allow_out_of_range; }; } // namespace operators } // namespace lite } // namespace paddle