// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { void scale(const float* input_data, const DDim& in_dim, float* output_data, const float scale, const float bias) { for (int i = 0; i < in_dim.production(); i++) { output_data[i] = input_data[i] * scale + bias; } } TEST(scale_image2d_fp32, compute) { LOG(INFO) << "to get kernel ..."; auto kernels = KernelRegistry::Global().Create( "scale", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault)); ASSERT_FALSE(kernels.empty()); auto kernel = std::move(kernels.front()); LOG(INFO) << "get kernel:" << kernel->doc(); lite::Tensor x, out; operators::ScaleParam param; param.x = &x; param.output = &out; param.scale = 1.5f; param.bias = 0.3f; std::unique_ptr context(new KernelContext); context->As().InitOnce(); kernel->SetParam(param); std::unique_ptr scale_context(new KernelContext); context->As().CopySharedTo( &(scale_context->As())); kernel->SetContext(std::move(scale_context)); const DDim in_dim = DDim(std::vector{4, 11, 107, 107}); const DDim out_dim = DDim(std::vector{4, 11, 107, 107}); x.Resize(in_dim); out.Resize(out_dim); std::default_random_engine engine; std::uniform_real_distribution dist(-5, 5); std::vector input_v(4 * 11 * 107 * 107); for (auto& i : input_v) { i = dist(engine); } LOG(INFO) << "prepare input"; CLImageConverterDefault* default_converter = new CLImageConverterDefault(); DDim image_shape = default_converter->InitImageDimInfoWith(in_dim); LOG(INFO) << "image_shape = " << image_shape[0] << " " << image_shape[1]; std::vector x_image_data(image_shape.production() * 4); // 4 : RGBA default_converter->NCHWToImage(input_v.data(), x_image_data.data(), in_dim); auto* x_image = x.mutable_data( image_shape[0], image_shape[1], x_image_data.data()); LOG(INFO) << "x_image:" << x_image; auto* out_image = out.mutable_data(image_shape[0], image_shape[1]); LOG(INFO) << "out_image:" << out_image; kernel->Launch(); auto* wait_list = context->As().cl_wait_list(); auto* out_ptr = param.output->data(); auto it = wait_list->find(out_ptr); if (it != wait_list->end()) { VLOG(4) << "--- Find the sync event for the target cl tensor. ---"; auto& event = *(it->second); event.wait(); } else { LOG(FATAL) << "Could not find the sync event for the target cl tensor."; } std::unique_ptr out_ref(new float[out_dim.production()]); scale(input_v.data(), in_dim, out_ref.get(), 1.5f, 0.3f); const size_t cl_image2d_row_pitch{0}; const size_t cl_image2d_slice_pitch{0}; float* out_image_data = new float[image_shape.production() * 4]; TargetWrapperCL::ImgcpySync(out_image_data, out_image, image_shape[0], image_shape[1], cl_image2d_row_pitch, cl_image2d_slice_pitch, IoDirection::DtoH); float* out_data = new float[image_shape.production() * 4]; default_converter->ImageToNCHW( out_image_data, out_data, image_shape, out_dim); for (int i = 0; i < out_dim.production(); i++) { EXPECT_NEAR(out_data[i], out_ref[i], 1e-6); } } } // namespace lite } // namespace paddle USE_LITE_KERNEL(scale, kOpenCL, kFloat, kImageDefault, image2d);