// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { #define A(i, j) a[i * lda + j] #define B(i, j) b[i * ldb + j] #define C(i, j) c[i * ldc + j] template void gemm_bias(const T* a, const int M, const int K, const T* b, const int K_, const int N, T* biases, T* c) { EXPECT_TRUE(K_ == K && M > 0 && N > 0 && K > 0); EXPECT_TRUE(a && b && c); const int lda = K; const int ldb = N; const int ldc = N; for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { C(m, n) = 0.0f; for (int k = 0; k < K; ++k) { C(m, n) += A(m, k) * B(k, n); } } } if (biases) { for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { C(m, n) += biases[n]; } } } } void PrintData(std::string name, float* a, const int rows, const int cols) { std::cout << "==== " << name << " ====" << std::endl; for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { std::cout << " " << a[r * cols + c]; } std::cout << std::endl; } } // buffer #if 0 // fc_buffer // #define PRINT_RESULT #define LOOP_TEST TEST(fc, compute) { std::unique_ptr context(new KernelContext); context->As().InitOnce(); #ifdef LOOP_TEST for (int m = 1; m < 213; m += 71) { for (int k = 1; k < 123; k += 31) { for (int n = 1; n < 123; n += 121) { #else #if 0 const int m = 1; const int k = 1024; const int n = 1000; #else const int m = 2; const int k = 3; const int n = 1; #endif #endif LOG(INFO) << "m=" << m << " n=" << n << " k=" << k; auto kernels = KernelRegistry::Global().Create( "fc", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)); ASSERT_FALSE(kernels.empty()); auto kernel = std::move(kernels.front()); lite::Tensor x, w, bias, out, out_ref; operators::FcParam param; param.input = &x; param.w = &w; param.bias = &bias; param.output = &out; param.in_num_col_dims = 1; kernel->SetParam(param); std::unique_ptr fc_context(new KernelContext); context->As().CopySharedTo( &(fc_context->As())); kernel->SetContext(std::move(fc_context)); const DDim x_dim = DDim(std::vector{m, k}); const DDim w_dim = DDim(std::vector{k, n}); const DDim bias_dim = DDim(std::vector{n}); const DDim out_dim = DDim(std::vector{m, n}); x.Resize(x_dim); w.Resize(w_dim); bias.Resize(bias_dim); out.Resize(out_dim); out_ref.Resize(out_dim); auto* x_data = x.mutable_data(TARGET(kOpenCL)); auto* w_data = w.mutable_data(TARGET(kOpenCL)); auto* bias_data = bias.mutable_data(TARGET(kOpenCL)); std::default_random_engine engine; std::uniform_real_distribution dist(-5, 5); auto* mapped_x = static_cast(TargetWrapperCL::Map( x_data, 0, sizeof(float) * x_dim.production())); for (int i = 0; i < x_dim.production(); ++i) { mapped_x[i] = static_cast(dist(engine)); } auto* mapped_w = static_cast(TargetWrapperCL::Map( w_data, 0, sizeof(float) * w_dim.production())); for (int i = 0; i < w_dim.production(); ++i) { mapped_w[i] = static_cast((dist(engine))); } auto* mapped_bias = static_cast(TargetWrapperCL::Map( bias_data, 0, sizeof(float) * bias_dim.production())); for (int i = 0; i < bias_dim.production(); ++i) { mapped_bias[i] = static_cast(/*(dist(engine))*/ 1); } // run opencl kernel kernel->Launch(); auto* wait_list = context->As().cl_wait_list(); auto* out_ptr = param.output->data(); auto it = wait_list->find(out_ptr); if (it != wait_list->end()) { VLOG(4) << "--- Find the sync event for the target cl tensor. ---"; auto& event = *(it->second); event.wait(); double start_nanos = event.getProfilingInfo(); double stop_nanos = event.getProfilingInfo(); double elapsed_micros = (stop_nanos - start_nanos) / 1000.0; LOG(INFO) << "Kernel Run Cost Time: " << elapsed_micros << " us."; } else { LOG(FATAL) << "Could not find the sync event for the target cl tensor."; } // run cpu ref auto* out_ref_data = out_ref.mutable_data(TARGET(kARM)); gemm_bias( mapped_x, m, k, mapped_w, k, n, mapped_bias, out_ref_data); auto* out_data = out.mutable_data(); auto* mapped_out = static_cast(TargetWrapperCL::Map( out_data, 0, sizeof(float) * out_dim.production())); #ifdef PRINT_RESULT PrintData("mapped_x", static_cast(mapped_x), m, k); PrintData("mapped_w", static_cast(mapped_w), k, n); PrintData("mapped_bias", static_cast(mapped_bias), 1, n); PrintData("out_ref_data", static_cast(out_ref_data), m, n); PrintData("mapped_out", static_cast(mapped_out), m, n); #endif for (int i = 0; i < out_dim.production(); i++) { EXPECT_NEAR(mapped_out[i], out_ref_data[i], 1e-6); } TargetWrapperCL::Unmap(x_data, mapped_x); TargetWrapperCL::Unmap(w_data, mapped_w); TargetWrapperCL::Unmap(bias_data, mapped_bias); TargetWrapperCL::Unmap(out_data, mapped_out); #ifdef LOOP_TEST } // n } // k } // m #endif } #endif // fc_buffer } // namespace lite } // namespace paddle // USE_LITE_KERNEL(fc, kOpenCL, kFloat, kNCHW, def);