// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "ai_ddk_lib/include/graph/operator_reg.h" #include "lite/core/op_lite.h" #include "lite/core/target_wrapper.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { namespace kernels { namespace npu { namespace bridges { class OpList { public: static OpList& Global() { static thread_local OpList x; return x; } void clear() { lists_.clear(); } void add(std::shared_ptr p) { lists_.push_back(p); } private: std::vector> lists_; }; // Build HIAI IR graph to om model, and store om model data into lite tensor bool BuildModel(std::vector& inputs, // NOLINT std::vector& outputs, // NOLINT lite::Tensor* model_data); std::string UniqueName(const std::string& prefix); ge::DataType PrecisionConverter(PrecisionType itype); ge::Format DataLayoutConverter(DataLayoutType itype); ge::TensorPtr CvtFromLiteTensor(Tensor* in_tensor, std::vector out_shape = {}, PrecisionType in_ptype = PRECISION(kFloat), DataLayoutType in_ltype = DATALAYOUT(kNCHW)); template ge::TensorPtr CreateTensorAndFillData(std::vector data, std::vector shape = {}, ge::Format format = ge::FORMAT_NCHW) { const std::type_info& info = typeid(T); ge::DataType type = ge::DT_FLOAT; if (info == typeid(float)) { type = ge::DT_FLOAT; } else if (info == typeid(int8_t)) { type = ge::DT_INT8; } else if (info == typeid(int32_t)) { type = ge::DT_INT32; } else { LOG(FATAL) << "Unknow value type " << info.name(); } if (shape.empty()) { shape = {static_cast(data.size())}; } else { int size = 1; for (auto i : shape) { size *= i; } CHECK_EQ(data.size(), size); } ge::TensorDesc desc(ge::Shape(shape), format, type); ge::TensorPtr tensor = std::make_shared(); tensor->SetTensorDesc(desc); tensor->SetData(reinterpret_cast(data.data()), data.size() * sizeof(T)); return tensor; } template ge::TensorPtr CreateTensorAndFillData(T value, std::vector shape = {1}, ge::Format format = ge::FORMAT_NCHW) { int64_t size = 1; for (auto i : shape) { size *= i; } std::vector data(size, value); return CreateTensorAndFillData(data, shape, format); } bool HasInputArg(const OpInfo* op_info, const Scope* scope, const std::string& argname); } // namespace bridges } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle