// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/reshape_op.h" #include "ai_ddk_lib/include/graph/buffer.h" #include "ai_ddk_lib/include/graph/graph.h" #include "ai_ddk_lib/include/graph/model.h" #include "ai_ddk_lib/include/graph/op/all_ops.h" #include "ai_ddk_lib/include/graph/operator.h" #include "ai_ddk_lib/include/graph/operator_reg.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utils.h" namespace paddle { namespace lite { namespace kernels { namespace npu { namespace bridges { node_map_type ReshapeConverter(const std::shared_ptr reshape_op, const node_map_type& inputs_map) { auto scope = reshape_op->scope(); auto op_info = reshape_op->op_info(); auto op_type = op_info->Type(); auto unique_op_type = UniqueName(op_type); LOG(INFO) << "Converting " + op_type + "..."; // get input, output and op attributes auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); // create reshape node and set input node from inputs_map auto reshape_node = std::make_shared(unique_op_type); CHECK(inputs_map.count(x_var_name)); reshape_node->set_input_tensor(*inputs_map.at(x_var_name)); OpList::Global().add(inputs_map.at(x_var_name)); // read shape from actual shape tensor as input "w" if 'Shape' is found if (HasInputArg(op_info, scope, "Shape")) { auto actual_shape_var_name = op_info->Input("Shape").front(); if (!inputs_map.count(actual_shape_var_name)) { auto actual_shape = scope->FindVar(actual_shape_var_name)->GetMutable(); auto actual_shape_dims = actual_shape->dims(); auto actual_shape_data = actual_shape->mutable_data(); auto shape = std::vector(actual_shape_data, actual_shape_data + actual_shape_dims.production()); auto out_dims = operators::ValidateShape(shape, x_dims); auto out_shape = out_dims.Vectorize(); if (out_shape.size() > 4) { LOG(WARNING) << "NPU DDK only supports less than 4 dimensions, but Shape has " << out_shape.size(); } auto actual_shape_const_node = std::make_shared(actual_shape_var_name); actual_shape_const_node->set_attr_value(CreateTensorAndFillData( std::vector(out_shape.begin(), out_shape.end()))); reshape_node->set_input_w(*actual_shape_const_node); OpList::Global().add(actual_shape_const_node); } else { reshape_node->set_input_w(*inputs_map.at(actual_shape_var_name)); OpList::Global().add(inputs_map.at(actual_shape_var_name)); } } else { auto shape = op_info->GetAttr>("shape"); auto out_dims = operators::ValidateShape(shape, x_dims); auto out_shape = out_dims.Vectorize(); if (out_shape.size() > 4) { LOG(WARNING) << "NPU DDK only supports less than 4 dimensions, but shape has " << out_shape.size(); } reshape_node->set_attr_shape( ge::AttrValue::LIST_INT(out_shape.begin(), out_shape.end())); } OpList::Global().add(reshape_node); node_map_type outputs_map; outputs_map[op_info->Output("Out").front()] = reshape_node; if (op_type == "reshape2") { // append an extra reshape node to calc XShape std::vector xshape_dims(x_dims.size() + 1, 1); for (size_t i = 0; i < x_dims.size(); i++) { xshape_dims[i + 1] = x_dims[i]; } if (xshape_dims.size() > 4) { LOG(WARNING) << "NPU DDK only supports less than 4 dimensions, but XShape has " << xshape_dims.size(); } auto xshape_node = std::make_shared(unique_op_type + "/xshape"); xshape_node->set_input_tensor(*inputs_map.at(x_var_name)); xshape_node->set_attr_shape( ge::AttrValue::LIST_INT(xshape_dims.begin(), xshape_dims.end())); OpList::Global().add(xshape_node); outputs_map[op_info->Output("XShape").front()] = xshape_node; } return outputs_map; } } // namespace bridges } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_NPU_BRIDGE(reshape, paddle::lite::kernels::npu::bridges::ReshapeConverter); REGISTER_NPU_BRIDGE(reshape2, paddle::lite::kernels::npu::bridges::ReshapeConverter);