// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/group_norm_op.h" #include #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { namespace operators { bool GroupNormOp::CheckShape() const { CHECK_OR_FALSE(param_.x); CHECK_OR_FALSE(param_.scale); CHECK_OR_FALSE(param_.bias); CHECK_OR_FALSE(param_.out); CHECK_OR_FALSE(param_.saved_mean); CHECK_OR_FALSE(param_.saved_variance); auto x_dims = param_.x->dims(); auto scale_dims = param_.scale->dims(); auto bias_dims = param_.bias->dims(); CHECK(x_dims.size() >= 2 && x_dims.size() <= 5) << "Input X must have 2 to 5 dimensions."; CHECK_EQ(scale_dims.size(), 1UL) << "Input Scale must have 1 dimensions."; CHECK_EQ(bias_dims.size(), 1UL) << "Input Bias must have 1 dimensions."; CHECK_GT(param_.epsilon, 0.f) << "epsilon should be greater than 0.f"; CHECK_LT(param_.epsilon, 0.01f) << "epsilon should be less than 0.01f"; CHECK_EQ(param_.channels, x_dims[1]) << "Input channels must be equal input_shape[1]"; CHECK_EQ(param_.channels % param_.groups, 0) << "channels must be divide groups"; return true; } bool GroupNormOp::InferShapeImpl() const { auto x_dims = param_.x->dims(); int64_t batch_size = x_dims[0]; int64_t num = param_.channels / param_.groups; param_.saved_mean->Resize({batch_size * num}); param_.saved_variance->Resize({batch_size * num}); param_.out->Resize(x_dims); return true; } bool GroupNormOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) { param_.x = scope->FindVar(op_desc.Input("X").front())->GetMutable(); param_.scale = scope->FindVar(op_desc.Input("Scale").front())->GetMutable(); param_.bias = scope->FindVar(op_desc.Input("Bias").front())->GetMutable(); param_.saved_mean = scope->FindVar(op_desc.Output("SavedMean").front())->GetMutable(); param_.saved_variance = scope->FindVar(op_desc.Output("SavedVariance").front()) ->GetMutable(); param_.out = scope->FindVar(op_desc.Output("Y").front())->GetMutable(); param_.epsilon = op_desc.GetAttr("epsilon"); param_.groups = op_desc.GetAttr("groups"); param_.channels = op_desc.GetAttr("channels"); return true; } } /* namespace operators */ } /* namespace lite */ } /* namespace paddle */ REGISTER_LITE_OP(group_norm, paddle::lite::operators::GroupNormOp);