// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" #include "lite/tests/kernels/fill_data.h" #include "lite/tests/kernels/test_funcs.h" namespace paddle { namespace lite { void fill_bias_fc(float* out, const float* bias, int num, int channel) { int remain = channel; for (int j = 0; j < num; ++j) { const float* ptr_bias = bias; float* ptr_out = out + j * channel; for (int i = 0; i < remain; ++i) { *(ptr_out++) += *(ptr_bias++); } } } DDim compute_out_dim(const DDim& dim_in, const DDim& wdim, int in_num_col_dim) { std::vector out_dim; out_dim.resize(in_num_col_dim + 1); auto in_mat_dims = dim_in.Flatten2D(in_num_col_dim); for (int i = 0; i < in_num_col_dim; ++i) { out_dim[i] = dim_in[i]; } out_dim[in_num_col_dim] = wdim[1]; return DDim(out_dim); } class FcOPTest : public arena::TestCase { protected: // common attributes for this op. std::string input_ = "x"; std::string weight_ = "w"; std::string bias_ = "b"; std::string out_ = "out"; int in_num_col_dims_{1}; DDim dims_{{1, 128}}; DDim wdims_{{128, 4}}; DDim bdims_{{4}}; public: FcOPTest(const Place& place, const std::string& alias, DDim dim_in, DDim dim_w, DDim dim_b, int in_num_col_dims) : TestCase(place, alias), dims_(std::move(dim_in)), wdims_(std::move(dim_w)), bdims_(dim_b), in_num_col_dims_(in_num_col_dims) {} void RunBaseline(Scope* scope) override { auto x = scope->FindTensor(input_); auto w = scope->FindTensor(weight_); auto b = scope->FindTensor(bias_); bool flag_bias = b; auto out = scope->NewTensor(out_); CHECK(out); DDim out_dim = compute_out_dim(x->dims(), w->dims(), in_num_col_dims_); out->Resize(out_dim); LOG(INFO) << "out dims: " << out_dim; auto x_data = x->data(); auto w_data = w->data(); const float* b_data = nullptr; if (flag_bias) { b_data = b->data(); } auto out_data = out->mutable_data(); int m = x->dims().count(0, in_num_col_dims_); CHECK_EQ(wdims_[0], x->dims().count(in_num_col_dims_, x->dims().size())); int k = wdims_[0]; int n = wdims_[1]; LOG(INFO) << "m: " << m << ", n: " << n << ", k: " << k; if (m == 1) { basic_gemv(n, k, w_data, x_data, b_data, out_data, 1.f, 0.f, true, flag_bias, false); } else { basic_gemm(false, false, m, n, k, 1.f, x_data, k, w_data, n, 0.f, out_data, n, b_data, false, false); if (flag_bias) { fill_bias_fc(out_data, b_data, m, n); } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("fc"); op_desc->SetInput("Input", {input_}); op_desc->SetInput("W", {weight_}); if (bdims_.production() > 0) { op_desc->SetInput("Bias", {bias_}); } op_desc->SetOutput("Out", {out_}); op_desc->SetAttr("in_num_col_dims", in_num_col_dims_); } void PrepareData() override { std::vector din(dims_.production()); fill_data_rand(din.data(), -1.f, 1.f, dims_.production()); std::vector win(wdims_.production()); fill_data_rand(win.data(), -1.f, 1.f, wdims_.production()); bool flag_bias = bdims_.production() > 0; std::vector bin(bdims_.production()); fill_data_rand(bin.data(), -1.f, 1.f, bdims_.production()); SetCommonTensor(input_, dims_, din.data()); SetCommonTensor(weight_, wdims_, win.data()); if (flag_bias) { SetCommonTensor(bias_, bdims_, bin.data()); } } }; void test_fc(Place place) { for (auto& m : {1, 3, 16}) { for (auto& n : {1, 4, 16, 128, 256, 1024}) { for (auto& k : {1, 16, 128, 1024}) { for (auto& bflag : {false, true}) { DDim dim_in{{m, k}}; DDim wdim{{k, n}}; DDim bdim{{bflag ? n : 0}}; std::unique_ptr tester( new FcOPTest(place, "def", dim_in, wdim, bdim, 1)); #ifdef LITE_WITH_ARM auto& ctx = tester->context()->As(); ctx.SetRunMode(lite_api::LITE_POWER_HIGH, 1); #endif arena::Arena arena(std::move(tester), place, 6e-5); if (!arena.TestPrecision()) { LOG(ERROR) << "run m: " << m << ", n: " << n << ", k: " << k << ", bias: " << (bflag ? "true" : "false") << " failed"; return; } } } } } } TEST(FcOP, precision) { #ifdef LITE_WITH_X86 Place place(TARGET(kX86)); #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_fc(place); #endif } } // namespace lite } // namespace paddle