// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/subgraph_compute.h" #include #include #include #include "ai_ddk_lib/include/hiai_ir_build.h" #include "lite/backends/npu/device.h" #include "lite/core/op_registry.h" #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/paddle_use_bridges.h" namespace paddle { namespace lite { namespace kernels { namespace npu { int SubgraphEngine::BuildDeviceProgram() { int status = 0; // Convert all of ops and their input vars and weights and added into the NPU // HiAI IR graph subgraph::npu::Graph graph; const auto& bridges = subgraph::Registry::Instance(); for (auto& inst : origin_program_) { auto op = inst.op(); CHECK(op); op->CheckShape(); op->InferShape(); std::string op_type = op->op_info()->Type(); if (!bridges.Exists("NPU", op_type)) { return subgraph::FAILED; } auto kernel = inst.kernel(); status |= bridges.Select("NPU", op_type)(reinterpret_cast(&graph), const_cast(op), const_cast(kernel)); if (subgraph::CHECK_FAILED(status)) { return subgraph::FAILED; } } // Collect the valid input and output nodes in the HiAI IR graph and update // the input and output names device_inames_.clear(); device_onames_.clear(); std::vector device_inodes; std::vector device_onodes; for (auto& input_name : input_names_) { if (graph.HasNode(input_name)) { if (!graph.GetType(input_name).persistable()) { device_inodes.push_back(*graph.GetNode(input_name)); device_inames_.push_back(input_name); } else { LOG(WARNING) << "[NPU] Input node " << input_name << " is skipped because it is a persistable node."; } } else { LOG(WARNING) << "[NPU] Input node " << input_name << " is skipped because it does not exist."; } } for (auto& output_name : output_names_) { if (graph.HasNode(output_name)) { device_onodes.push_back(*graph.GetNode(output_name)); device_onames_.push_back(output_name); } else { LOG(WARNING) << "[NPU] Output node " << output_name << " is skipped because it does not exist."; } } CHECK(!device_inames_.empty()) << "[NPU] No input nodes found for building NPU model"; CHECK(!device_onames_.empty()) << "[NPU] No output nodes found for building NPU model"; // Build the HiAI IR graph to HiAI om model as the device program device_program_ = lite::npu::Device::Global().Build( model_name_, device_inodes, device_onodes); if (device_program_ == nullptr) { LOG(WARNING) << "[NPU] Build model failed!"; return subgraph::FAILED; } // Query and check the dimensions of valid input and output tensors std::vector device_idims, device_odims; if (device_program_->GetModelIOTensorDim( model_name_, device_idims, device_odims) != hiai::AI_SUCCESS) { LOG(WARNING) << "[NPU] Get the dimensions of input and output tensors failed!"; return subgraph::FAILED; } CHECK_EQ(device_idims.size(), device_inames_.size()); CHECK_EQ(device_odims.size(), device_onames_.size()); origin_idims_.resize(device_inames_.size()); origin_itensors_.resize(device_inames_.size()); device_itensors_.resize(device_inames_.size()); origin_odims_.resize(device_onames_.size()); origin_otensors_.resize(device_onames_.size()); device_otensors_.resize(device_onames_.size()); for (int i = 0; i < device_inames_.size(); i++) { auto type = graph.GetType(device_inames_[i]); auto precision = type.precision(); auto layout = type.layout(); origin_itensors_[i] = scope_->FindMutableTensor(device_inames_[i]); CHECK(origin_itensors_[i]); origin_idims_[i] = origin_itensors_[i]->dims(); VLOG(3) << "[NPU] Inputs[" << i << "] precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout) << " dims: {" << device_idims[i].GetNumber() << "," << device_idims[i].GetChannel() << "," << device_idims[i].GetHeight() << "," << device_idims[i].GetWidth() << "}"; // Prepare the device input tensors CHECK_EQ(origin_idims_[i].production(), device_idims[i].GetNumber() * device_idims[i].GetChannel() * device_idims[i].GetHeight() * device_idims[i].GetWidth()); device_itensors_[i].reset(new hiai::AiTensor); device_itensors_[i]->Init(&(device_idims[i])); } for (int i = 0; i < device_onames_.size(); i++) { auto type = graph.GetType(device_onames_[i]); auto precision = type.precision(); auto layout = type.layout(); origin_otensors_[i] = scope_->FindMutableTensor(device_onames_[i]); CHECK(origin_otensors_[i]); origin_odims_[i] = origin_otensors_[i]->dims(); VLOG(3) << "[NPU] Outputs[" << i << "] precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout) << " dims: {" << device_odims[i].GetNumber() << "," << device_odims[i].GetChannel() << "," << device_odims[i].GetHeight() << "," << device_odims[i].GetWidth() << "}"; // Prepare the device output tensors switch (precision) { case PRECISION(kFloat): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt8): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt16): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt32): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt64): origin_otensors_[i]->mutable_data(); break; default: LOG(FATAL) << "[NPU] " << device_onames_[i] << " can't mutable data with precision type " << PrecisionToStr(precision); break; } CHECK_EQ(origin_odims_[i].production(), device_odims[i].GetNumber() * device_odims[i].GetChannel() * device_odims[i].GetHeight() * device_odims[i].GetWidth()); device_otensors_[i].reset(new hiai::AiTensor); device_otensors_[i]->Init(&(device_odims[i])); } return status; } int SubgraphEngine::LaunchDeviceProgram() { // Copy the data of origin input tensors to the buffer of input HiAI tensors for (size_t i = 0; i < device_itensors_.size(); i++) { std::memcpy(device_itensors_[i]->GetBuffer(), origin_itensors_[i]->raw_data(), origin_itensors_[i]->memory_size()); } // Run the HiAI model by name std::string key = "model_name"; // Note: key seems must be model_name model_context_.AddPara(key, model_name_); auto GetCurrentUS = []() -> double { struct timeval time; gettimeofday(&time, NULL); return 1e+6 * time.tv_sec + time.tv_usec; }; int istamp; auto start_time = GetCurrentUS(); CHECK_EQ( device_program_->Process( model_context_, device_itensors_, device_otensors_, 1000, istamp), hiai::AI_SUCCESS); VLOG(3) << "[NPU] Process cost " << GetCurrentUS() - start_time << " us"; // Copy the data of output HiAI tensor to the buffer of origin output tensors for (size_t i = 0; i < device_otensors_.size(); i++) { std::memcpy(const_cast(origin_otensors_[i]->raw_data()), device_otensors_[i]->GetBuffer(), device_otensors_[i]->GetSize()); } return 0; } void SubgraphCompute::PrepareForRun() { auto& param = this->Param(); engine_.reset(new SubgraphEngine(ctx_.get(), param.sub_block_idx, param.sub_block_desc, param.input_data_names, param.output_data_names, param.scope)); CHECK(engine_); engine_->Build(); } void SubgraphCompute::Run() { CHECK(engine_); engine_->Launch(); } } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(subgraph, kNPU, kFloat, kNCHW, paddle::lite::kernels::npu::SubgraphCompute, def) .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize();