// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/pool_op.h" #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto pooling_type = op_info->GetAttr("pooling_type"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ksize = op_info->GetAttr>("ksize"); auto paddings = op_info->GetAttr>("paddings"); // X node std::shared_ptr x_node = nullptr; if (graph->HasNode(x_name)) { x_node = graph->GetNode(x_name); } else { x_node = graph->AddNode(x_name, x_dims); } // pool mode int mode = 0; if (pooling_type == "max") { mode = 0; } else if (pooling_type == "avg") { mode = 1; CHECK(op_info->GetAttr("exclusive")) << "[NPU] exclusive must be true in HiAI DDK"; } else { LOG(WARNING) << "[NPU] Unsupported pooling type: " << pooling_type; return FAILED; } // pad mode int pad_mode = 0; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } if (padding_algorithm == "SAME") { pad_mode = 6; } else if (padding_algorithm == "VALID") { pad_mode = 5; } // paddings and strides if (paddings.size() == 2L) { for (size_t i = 0; i < 2L; ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "[NPU] Paddings size should be the same or twice as the inputs size."; bool adaptive = false; if (op_info->HasAttr("adaptive")) { adaptive = op_info->GetAttr("adaptive"); } auto strides = op_info->GetAttr>("strides"); lite::operators::UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm, x->dims(), strides, ksize); // ceil mode int ceil_mode = 0; if (op_info->HasAttr("ceil_mode")) { ceil_mode = op_info->GetAttr("ceil_mode") ? 1 : 0; } // Pooling node auto pool_node = graph->AddNode(out_name); pool_node->set_input_x(*x_node); pool_node->set_attr_mode(mode); pool_node->set_attr_pad_mode(pad_mode); pool_node->set_attr_global_pooling(global_pooling); pool_node->set_attr_window( ge::AttrValue::LIST_INT(ksize.begin(), ksize.end())); pool_node->set_attr_pad(ge::AttrValue::LIST_INT{ paddings[0], paddings[1], paddings[2], paddings[3]}); pool_node->set_attr_stride( ge::AttrValue::LIST_INT(strides.begin(), strides.end())); pool_node->set_attr_ceil_mode(ceil_mode); // pool_node->set_attr_data_mode(data_mode); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(NPU, pool2d, paddle::lite::subgraph::npu::PoolConverter);