// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/mean_compute.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void MeanCompute::Run() { auto& param = this->Param(); const auto* input = param.X; auto* output = param.Out; auto x_dim = input->dims(); auto x_data = input->data(); auto out_data = output->mutable_data(); int x_size = x_dim.production(); float sum = 0; for (int i = 0; i < x_size; i++) { sum += x_data[i]; } out_data[0] = sum / x_size; } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( mean, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::MeanCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();