// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/subgraph_compute.h" #include #include #include #include "lite/backends/xpu/device.h" #include "lite/core/op_registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/paddle_use_bridges.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { int SubgraphEngine::BuildDeviceProgram() { int status = 0; // Convert all of ops and their input vars and weights and added into the XPU // IR graph subgraph::xpu::Graph graph; const auto& bridges = subgraph::Registry::Instance(); for (auto& inst : origin_program_) { auto op = const_cast(inst.op()); CHECK(op); op->CheckShape(); op->InferShape(); std::string op_type = op->op_info()->Type(); if (!bridges.Exists(op_type, TARGET(kXPU))) { return subgraph::FAILED; } auto kernel = inst.kernel(); status |= bridges.Select(op_type, TARGET(kXPU))( reinterpret_cast(&graph), op, const_cast(kernel)); if (subgraph::CHECK_FAILED(status)) { return subgraph::FAILED; } } // Obtain the output nodes of the XPU IR graph and build the graph to the XPU // runtime device_inames_.clear(); device_onames_.clear(); std::vector device_inodes; std::vector device_onodes; for (auto& input_name : input_names_) { if (graph.Has(input_name)) { if (graph.Get(input_name)->is_data()) { device_inodes.push_back(graph.Get(input_name)->data().get()); device_inames_.push_back(input_name); } else { LOG(WARNING) << "[XPU] Input node " << input_name << " is ignored because it is not a data node."; } } else { LOG(WARNING) << "[XPU] Input node " << input_name << " is ignored because it does not exist."; } } for (auto& output_name : output_names_) { if (graph.Has(output_name)) { device_onodes.push_back(graph.Get(output_name)->data().get()); device_onames_.push_back(output_name); } else { LOG(WARNING) << "[XPU] Output node " << output_name << " is ignored because it does not exist."; } } CHECK(!device_inames_.empty()) << "[XPU] No input nodes found for building XPU model"; CHECK(!device_onames_.empty()) << "[XPU] No output nodes found for building XPU model"; device_program_ = lite::xpu::Device::Global().Build( &graph.builder_, &graph.params_, &device_onodes); if (device_program_ == nullptr) { LOG(WARNING) << "[XPU] Build model failed!"; return subgraph::FAILED; } // Query and check the dimensions of input and output tensors origin_idims_.resize(device_inames_.size()); origin_itensors_.resize(device_inames_.size()); device_itensors_.resize(device_inames_.size()); origin_odims_.resize(device_onames_.size()); origin_otensors_.resize(device_onames_.size()); device_otensors_.resize(device_onames_.size()); for (int i = 0; i < device_inames_.size(); i++) { auto node = graph.Get(device_inames_[i]); auto precision = node->precision(); auto layout = node->layout(); origin_itensors_[i] = scope_->FindMutableTensor(device_inames_[i]); CHECK(origin_itensors_[i]); origin_idims_[i] = origin_itensors_[i]->dims(); VLOG(3) << "[XPU] Inputs[" << i << "] name: " << device_inames_[i] << " precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout) << " dims: " << origin_idims_[i]; // Prepare the device input tensors which share data with the origin input // tensors device_itensors_[i].data = nullptr; device_itensors_[i].ctx.device_type = subgraph::xpu::CvtDLDeviceType(TARGET(kHost)); device_itensors_[i].ctx.device_id = 0; device_itensors_[i].ndim = origin_idims_[i].size(); device_itensors_[i].dtype = subgraph::xpu::CvtDLDataType(precision); device_itensors_[i].shape = const_cast( static_cast(origin_idims_[i].data().data())); device_itensors_[i].strides = nullptr; device_itensors_[i].byte_offset = 0; } for (int i = 0; i < device_onames_.size(); i++) { auto node = graph.Get(device_onames_[i]); auto precision = node->precision(); auto layout = node->layout(); origin_otensors_[i] = scope_->FindMutableTensor(device_onames_[i]); CHECK(origin_otensors_[i]); origin_odims_[i] = origin_otensors_[i]->dims(); VLOG(3) << "[XPU] Outputs[" << i << "] name: " << device_onames_[i] << " precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout) << " dims: " << origin_odims_[i]; // Prepare the device output tensors which share data with the origin output // tensors switch (precision) { case PRECISION(kFloat): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt8): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt16): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt32): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt64): origin_otensors_[i]->mutable_data(); break; default: LOG(FATAL) << "[XPU] " << device_onames_[i] << " can't mutable data with precision type " << PrecisionToStr(precision); break; } device_otensors_[i].data = nullptr; device_otensors_[i].ctx.device_type = subgraph::xpu::CvtDLDeviceType(TARGET(kHost)); device_otensors_[i].ctx.device_id = 0; device_otensors_[i].ndim = origin_odims_[i].size(); device_otensors_[i].dtype = subgraph::xpu::CvtDLDataType(precision); device_otensors_[i].shape = const_cast( static_cast(origin_odims_[i].data().data())); device_otensors_[i].strides = nullptr; device_otensors_[i].byte_offset = 0; } return status; } int SubgraphEngine::LaunchDeviceProgram() { for (size_t i = 0; i < device_itensors_.size(); i++) { // Update the data pointer of DLTensor to track the origin input tensors device_itensors_[i].data = const_cast(origin_itensors_[i]->raw_data()); device_program_->SetInput(device_inames_[i], &device_itensors_[i]); } // Run the XPU model auto GetCurrentUS = []() -> double { struct timeval time; gettimeofday(&time, NULL); return 1e+6 * time.tv_sec + time.tv_usec; }; auto start_time = GetCurrentUS(); device_program_->Run(); VLOG(3) << "[XPU] Process cost " << GetCurrentUS() - start_time << " us"; for (size_t i = 0; i < device_otensors_.size(); i++) { // Update the data pointer of DLTensor to track the origin output tensors device_otensors_[i].data = const_cast(origin_otensors_[i]->raw_data()); device_program_->CopyOutputTo(i, &device_otensors_[i]); } return 0; } void SubgraphCompute::PrepareForRun() { auto& param = this->Param(); engine_.reset(new SubgraphEngine(ctx_.get(), param.sub_block_idx, param.sub_block_desc, param.input_data_names, param.output_data_names, param.scope)); CHECK(engine_); engine_->Build(); } void SubgraphCompute::Run() { CHECK(engine_); engine_->Launch(); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(subgraph, kXPU, kAny, kNCHW, paddle::lite::kernels::xpu::SubgraphCompute, def) .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny))}) .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny))}) .Finalize();