// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/paddle_api.h" #include "lite/core/tensor.h" namespace paddle { namespace lite_api { Tensor::Tensor(void *raw) : raw_tensor_(raw) {} // TODO(Superjomn) refine this by using another `const void* const_raw`; Tensor::Tensor(const void *raw) { raw_tensor_ = const_cast(raw); } lite::Tensor *tensor(void *x) { return static_cast(x); } const lite::Tensor *ctensor(void *x) { return static_cast(x); } void Tensor::Resize(const shape_t &shape) { tensor(raw_tensor_)->Resize(shape); } template <> const float *Tensor::data() const { return ctensor(raw_tensor_)->data(); } template <> const int8_t *Tensor::data() const { return ctensor(raw_tensor_)->data(); } template <> float *Tensor::mutable_data() const { return tensor(raw_tensor_)->mutable_data(); } template <> int8_t *Tensor::mutable_data() const { return tensor(raw_tensor_)->mutable_data(); } shape_t Tensor::shape() const { return ctensor(raw_tensor_)->dims().Vectorize(); } lod_t Tensor::lod() const { return ctensor(raw_tensor_)->lod(); } void Tensor::SetLoD(const lod_t &lod) { tensor(raw_tensor_)->set_lod(lod); } void PaddlePredictor::SaveOptimizedModel(const std::string &model_dir, LiteModelType model_type) { LOG(FATAL) << "The SaveOptimizedModel API is only supported by CxxConfig predictor."; } template std::shared_ptr CreatePaddlePredictor(const ConfigT &) { return std::shared_ptr(); } } // namespace lite_api } // namespace paddle