// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/api/paddle_place.h" #include "lite/backends/opencl/cl_half.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/core/target_wrapper.h" #include "lite/core/type_system.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/cp_logging.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { // [NCHW] -> [ImageDefault] class LayoutComputeBufferChwToImageDefault : public KernelLite { public: using param_t = operators::LayoutParam; void PrepareForRun() override { auto& param = Param(); if (param.process_type == 1) { kernel_func_name_ = "buffer_to_image2d_with_pre255"; } VLOG(1) << "kernel_func_name_:" << kernel_func_name_; auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "image/layout_kernel.cl", build_options_); } void Run() override { auto& param = Param(); const cl::Buffer* x_data; if (param.process_type == 1) { x_data = param.x->data(); } else { x_data = param.x->data(); } auto x_dims = param.x->dims(); auto image_shape = InitImageDimInfoWith(x_dims); auto* y_data = param.y->mutable_data( image_shape["width"], image_shape["height"]); auto y_dims = param.y->dims(); // out info std::vector new_dims = {1, 1, 1, 1}; for (int tidx = 0; tidx < x_dims.size(); ++tidx) { new_dims[4 - x_dims.size() + tidx] = x_dims[tidx]; } const int out_C = new_dims[1]; const int out_H = new_dims[2]; const int out_W = new_dims[3]; const int Stride2 = out_C * out_H * out_W; const int Stride1 = out_H * out_W; const int Stride0 = out_W; VLOG(2) << "param.process_type:" << param.process_type; VLOG(2) << "x_dims:" << x_dims; VLOG(2) << "param.x->memory_size():" << param.x->memory_size(); VLOG(2) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " " << new_dims[1] << " " << new_dims[2] << " " << new_dims[3]; VLOG(2) << "y_dims:" << y_dims; VLOG(2) << "param.y->memory_size():" << param.y->memory_size(); VLOG(2) << "y image_shape(w,h):" << image_shape["width"] << " " << image_shape["height"]; VLOG(2) << "out_C:" << out_C; VLOG(2) << "out_H:" << out_H; VLOG(2) << "out_W:" << out_W; VLOG(2) << "Stride2:" << Stride2; VLOG(2) << "Stride1:" << Stride1; VLOG(2) << "Stride0:" << Stride0; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int arg_idx = 0; cl_int status = kernel.setArg(arg_idx, *x_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *y_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_H)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_W)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_C)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride0)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride1)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride2)); CL_CHECK_FATAL(status); VLOG(2) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3] << " " << (new_dims[0] * new_dims[2]); auto global_work_size = cl::NDRange{static_cast((new_dims[1] + 3) / 4), static_cast(new_dims[3]), static_cast(new_dims[0] * new_dims[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(y_data, event_); } std::string doc() const override { return "Trans Layout from cl::Buffer(NCHW) to " "cl::Image2D(ImageDefault/RGBA), Float ---> FP16"; } private: std::string kernel_func_name_{"buffer_to_image2d"}; std::string build_options_{"-DCL_DTYPE_float"}; std::shared_ptr event_{new cl::Event}; }; // [ImageDefault] -> [NCHW] class LayoutComputeImageDefaultToBufferChw : public KernelLite { public: using param_t = operators::LayoutParam; void PrepareForRun() override { auto& param = Param(); if (param.process_type == 1) { kernel_func_name_ = "image2d_to_buffer_with_post255"; } VLOG(1) << "kernel_func_name_:" << kernel_func_name_; auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "image/layout_kernel.cl", build_options_); } void Run() override { auto& param = Param(); const cl::Buffer* y_data; if (param.process_type == 1) { y_data = param.y->mutable_data(TARGET(kOpenCL)); } else { y_data = param.y->mutable_data(TARGET(kOpenCL)); } auto* x_data = param.x->data(); auto x_dims = param.x->dims(); auto y_dims = param.y->dims(); auto x_image_shape = InitImageDimInfoWith(x_dims); std::vector new_dims = {1, 1, 1, 1}; for (int j = 0; j < x_dims.size(); ++j) { new_dims[4 - x_dims.size() + j] = x_dims[j]; } VLOG(2) << "param.process_type:" << param.process_type; VLOG(2) << "x_dims:" << x_dims; VLOG(2) << "param.x->memory_size():" << param.x->memory_size(); VLOG(2) << "x_image_shape(w,h):" << x_image_shape["width"] << " " << x_image_shape["height"]; VLOG(2) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " " << new_dims[1] << " " << new_dims[2] << " " << new_dims[3]; VLOG(2) << "y_dims:" << y_dims; VLOG(2) << "param.y->memory_size():" << param.y->memory_size(); size_t C = new_dims[1]; size_t in_height = new_dims[2]; size_t in_width = new_dims[3]; int size_ch = in_height * in_width; int size_block = size_ch * 4; int size_batch = size_ch * C; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int arg_idx = 0; cl_int status = kernel.setArg(arg_idx, *x_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_width)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_height)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *y_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(size_ch)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(size_block)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(size_batch)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(C)); CL_CHECK_FATAL(status); VLOG(2) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3] << " " << (new_dims[0] * new_dims[2]); auto global_work_size = cl::NDRange{static_cast((new_dims[1] + 3) / 4), static_cast(new_dims[3]), static_cast(new_dims[0] * new_dims[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(y_data, event_); } std::string doc() const override { return "Trans Layout from cl::Image2D(ImageDefault/RGBA) to " "cl::Buffer(NCHW), FP16 ---> Float"; } private: std::string kernel_func_name_{"image2d_to_buffer"}; std::string build_options_{"-DCL_DTYPE_float"}; std::shared_ptr event_{new cl::Event}; }; // [NCHW] -> [ImageDW] class LayoutComputeBufferChwToImage2DNw : public KernelLite { public: using param_t = operators::LayoutParam; void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "buffer/layout_kernel.cl", build_options_); } void Run() override { auto& param = Param(); auto* x_data = param.x->data(); auto x_dims = param.x->dims(); CHECK(x_dims.size() == 4) << " Tensor dim is not 4."; size_t image_width = x_dims[3] * ((x_dims[0] + 3) / 4); size_t image_height = x_dims[1] * x_dims[2]; auto* y_data = param.y->mutable_data(image_width, image_height); auto y_dims = param.y->dims(); // out info std::vector new_dims = {1, 1, 1, 1}; for (int tidx = 0; tidx < x_dims.size(); ++tidx) { new_dims[4 - x_dims.size() + tidx] = x_dims[tidx]; } const int out_N = new_dims[0]; const int out_C = new_dims[1]; const int out_H = new_dims[2]; const int out_W = new_dims[3]; const int Stride2 = out_C * out_H * out_W; const int Stride1 = out_H * out_W; const int Stride0 = out_W; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int arg_idx = 0; cl_int status = kernel.setArg(arg_idx, *x_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *y_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_H)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_W)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_N)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride0)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride1)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride2)); CL_CHECK_FATAL(status); VLOG(2) << "gws:[3D]" << ((out_N + 3) / 4) << " " << out_W << " " << (out_C * out_H); auto global_work_size = cl::NDRange{static_cast((out_N + 3) / 4), // N blocks static_cast(out_W), // w static_cast(out_C * out_H)}; // ch status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(y_data, event_); } std::string doc() const override { return "Trans Layout from cl::Buffer(NCHW) to cl::Image2D(ImageDW/CLNW)"; } private: std::string kernel_func_name_{"buffer_to_image2d_nw"}; std::string build_options_{"-DCL_DTYPE_float "}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle // [NCHW] -> [ImageDefault] REGISTER_LITE_KERNEL( layout, kOpenCL, kAny, kImageDefault, paddle::lite::kernels::opencl::LayoutComputeBufferChwToImageDefault, NCHW_to_ImageDefault) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kImageDefault))}) .Finalize(); // [ImageDefault] -> [NCHW] REGISTER_LITE_KERNEL( layout, kOpenCL, kAny, kNCHW, paddle::lite::kernels::opencl::LayoutComputeImageDefaultToBufferChw, ImageDefault_to_NCHW) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW))}) .Finalize();