/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "fpga/V2/api.h" #include #include "fpga/V2/bias_scale.h" #include "fpga/V2/config.h" #include "fpga/V2/filter.h" #include "fpga/V2/image.h" namespace paddle_mobile { namespace fpga { static std::map memory_map; int open_device() { int ret = open_device_driver(); return ret; } int close_device() { int ret = close_device_driver(); return ret; } void *fpga_malloc(size_t size) { static uint64_t counter = 0; #ifdef PADDLE_MOBILE_ZU5 auto ptr = fpga_malloc_driver(size); #else auto ptr = malloc(size); #endif counter += size; memory_map.insert(std::make_pair(ptr, size)); // DLOG << "Address: " << ptr << ", " << size << " bytes allocated. Total " // << counter << " bytes"; return ptr; } void fpga_free(void *ptr) { static uint64_t counter = 0; size_t size = 0; auto iter = memory_map.find(ptr); // std::map::iterator if (iter != memory_map.end()) { size = iter->second; memory_map.erase(iter); #ifdef PADDLE_MOBILE_ZU5 fpga_free_driver(ptr); #else free(ptr); #endif counter += size; // DLOG << "Address: " << ptr << ", " << size << " bytes freed. Total " // << counter << " bytes"; } else { DLOG << "Invalid pointer"; } } half fp32_2_fp16(float fp32_num) { unsigned long tmp = *(unsigned long *)(&fp32_num); // NOLINT auto t = (half)(((tmp & 0x007fffff) >> 13) | ((tmp & 0x80000000) >> 16) | (((tmp & 0x7f800000) >> 13) - (112 << 10))); if (tmp & 0x1000) { t++; // roundoff } return t; } float fp16_2_fp32(half fp16_num) { int frac = (fp16_num & 0x3ff); int exp = ((fp16_num & 0x7c00) >> 10) + 112; int s = fp16_num & 0x8000; int tmp = 0; float fp32_num; tmp = s << 16 | exp << 23 | frac << 13; fp32_num = *(float *)&tmp; // NOLINT return fp32_num; } void format_image(framework::Tensor *image_tensor) { auto dims = image_tensor->dims(); auto channel = dims[1], height = dims[2], width = dims[3]; auto data_ptr = image_tensor->data(); size_t memory_size = channel * height * width * sizeof(float); auto new_data = (float *)fpga_malloc(memory_size); // NOLINT memcpy(new_data, data_ptr, memory_size); int aligned_channel = filter::calc_aligned_channel((int)channel); // NOLINT image::format_image(&new_data, (int)channel, (int)height, // NOLINT (int)width, // NOLINT aligned_channel); image_tensor->reset_data_ptr(new_data); } void format_fp16_ofm(framework::Tensor *ofm_tensor, int aligned_channel) { auto dims = ofm_tensor->dims(); size_t memory_size = 0; if (dims.size() == 4) { auto height = dims[2], width = dims[3]; memory_size = (height + 1) / 2 * 2 * width * aligned_channel * sizeof(half); } else if (dims.size() == 2) { memory_size = aligned_channel * sizeof(half); } else { DLOG << "Wrong ofm dimension"; } auto p = fpga_malloc(memory_size); memset(p, 0, memory_size); ofm_tensor->reset_data_ptr(p); } void format_fp32_ofm(framework::Tensor *ofm_tensor, int aligned_channel) { auto dims = ofm_tensor->dims(); size_t memory_size = 0; if (dims.size() == 4) { auto height = dims[2], width = dims[3]; memory_size = height * width * aligned_channel * sizeof(float); } else if (dims.size() == 2) { memory_size = aligned_channel * sizeof(float); } else { DLOG << "Wrong ofm dimension"; } auto p = fpga_malloc(memory_size); memset(p, 0, memory_size); ofm_tensor->reset_data_ptr(p); } float filter_find_max(framework::Tensor *filter_tensor) { auto filter_ptr = filter_tensor->data(); return filter::find_max(filter_ptr, (int)filter_tensor->numel()); // NOLINT } int get_aligned_channel_num(int channel_num) { return filter::calc_aligned_channel(channel_num); } int get_aligned_filter_num(framework::Tensor *filter_tensor) { auto dims = filter_tensor->dims(); return filter::calc_aligned_num((int)dims[0], (int)dims[1]); // NOLINT } int get_conv_output_channel(framework::Tensor *filter_tensor) { int aligned_filter_num = get_aligned_filter_num(filter_tensor); return get_aligned_channel_num(aligned_filter_num); } void format_filter(framework::Tensor *filter_tensor, float max_value, int group_num) { filter_tensor->scale[0] = float(max_value / 127.0); // NOLINT filter_tensor->scale[1] = float(127.0 / max_value); // NOLINT auto dims = filter_tensor->dims(); auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3]; auto data_ptr = filter_tensor->data(); size_t memory_size = num * channel * height * width * sizeof(float); auto new_data = (float *)fpga_malloc(memory_size); // NOLINT memcpy(new_data, data_ptr, memory_size); filter::format_filter(&new_data, (int)num, (int)channel, // NOLINT (int)height, // NOLINT (int)width, group_num, max_value); // NOLINT filter_tensor->reset_data_ptr(new_data); } void format_fc_filter(framework::Tensor *filter_tensor, float max_value) { filter_tensor->scale[0] = float(max_value / 127.0); // NOLINT filter_tensor->scale[1] = float(127.0 / max_value); // NOLINT auto dims = filter_tensor->dims(); auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3]; auto data_ptr = filter_tensor->data(); size_t memory_size = num * channel * height * width * sizeof(float); auto new_data = (float *)fpga_malloc(memory_size); // NOLINT memcpy(new_data, data_ptr, memory_size); filter::format_fc_filter(&new_data, (int)num, (int)channel, // NOLINT (int)height, // NOLINT (int)width, 1, max_value); // NOLINT filter_tensor->reset_data_ptr(new_data); } void format_bias_scale_array(float **bias_scale_array, int filter_num, int filter_channel) { int num_after_alignment = filter::calc_aligned_num(filter_channel, filter_channel); bias_scale::format_bias_scale_array(bias_scale_array, filter_num, num_after_alignment); } void format_concat_output(framework::Tensor *out, int height, int width, uint32_t out_channel) { auto data_ptr = fpga_malloc(out_channel * height * width * sizeof(half)); auto ddim = framework::make_ddim({1, out_channel, height, width}); out->Resize(ddim); out->reset_data_ptr(data_ptr); } int format_conv_data(framework::Tensor *filter_tensor, framework::Tensor *ofm_tensor, float *bs_ptr, int group) { float max_value = fpga::filter_find_max(filter_tensor); fpga::format_filter(filter_tensor, max_value, group); int aligned_num = get_aligned_filter_num(filter_tensor); fpga::format_bias_scale_array(&bs_ptr, (int)filter_tensor->dims()[0], // NOLINT aligned_num); int aligned_channel = fpga::get_conv_output_channel(filter_tensor); fpga::format_fp16_ofm(ofm_tensor, aligned_channel); DLOG << aligned_channel; return aligned_channel; } int format_fc_data(framework::Tensor *filter_tensor, framework::Tensor *ofm_tensor, float *bs_ptr) { float max_value = fpga::filter_find_max(filter_tensor); fpga::format_fc_filter(filter_tensor, max_value); int aligned_num = get_aligned_filter_num(filter_tensor); fpga::format_bias_scale_array(&bs_ptr, (int)filter_tensor->dims()[0], // NOLINT aligned_num); int aligned_channel = fpga::get_conv_output_channel(filter_tensor); fpga::format_fp16_ofm(ofm_tensor, aligned_channel); DLOG << aligned_channel; return aligned_channel; } void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input, framework::Tensor *out, framework::Tensor *filter, bool relu_enabled, int group_num, int stride_h, int stride_w, int padding_h, int padding_w, float *bs_ptr) { auto input_ptr = input->data(); auto filter_ptr = filter->data(); auto out_ptr = out->data(); arg->group_num = (uint32_t)group_num; arg->split_num = 1; arg->filter_num = (uint32_t)filter->dims()[0]; arg->output.address = out_ptr; arg->output.scale_address = out->scale; arg->conv_args = (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs)); // NOLINT arg->concat_arg.image_num = arg->split_num; arg->concat_arg.image_out = out_ptr; arg->concat_arg.scale_out = out->scale; arg->concat_arg.height = (uint32_t)out->dims()[2]; arg->concat_arg.width = (uint32_t)out->dims()[3]; int n = arg->split_num; arg->concat_arg.images_in = (half **)fpga_malloc(n * sizeof(int *)); // NOLINT arg->concat_arg.scales_in = (float **)fpga_malloc(n * sizeof(float *)); // NOLINT arg->concat_arg.channel_num = (uint32_t *)fpga_malloc(n * sizeof(uint32_t)); // NOLINT for (int i = 0; i < n; i++) { arg->conv_args[i].relu_enabled = relu_enabled; arg->conv_args[i].sb_address = bs_ptr; arg->conv_args[i].filter_address = (int8_t *)filter_ptr; // NOLINT arg->conv_args[i].filter_scale_address = filter->scale; arg->conv_args[i].filter_num = arg->filter_num; arg->conv_args[i].group_num = (uint32_t)group_num; arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h; arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w; arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2]; arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3]; arg->conv_args[i].image.address = input_ptr; arg->conv_args[i].image.scale_address = input->scale; arg->conv_args[i].image.channels = (uint32_t)input->dims()[1]; arg->conv_args[i].image.height = (uint32_t)input->dims()[2]; arg->conv_args[i].image.width = (uint32_t)input->dims()[3]; arg->conv_args[i].image.pad_height = (uint32_t)padding_h; arg->conv_args[i].image.pad_width = (uint32_t)padding_w; arg->conv_args[i].output.address = out_ptr; arg->conv_args[i].output.scale_address = out->scale; } } } // namespace fpga } // namespace paddle_mobile