/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef CONV_TRANSPOSE #include #include "framework/ddim.h" #include "operators/math/im2col.h" #include "operators/math/math_function.h" #include "operators/math/vol2col.h" #include "operators/op_param.h" #pragma once namespace paddle_mobile { namespace operators { template void ConvTransposeCompute(const ConvTransposeParam ¶m) { const Tensor *input = param.Input(); Tensor filter = *param.Filter(); Tensor *output = param.Output(); auto strides = param.Strides(); auto paddings = param.Paddings(); auto dilations = param.Dilations(); auto groups = param.Groups(); const int batch_size = input->dims()[0]; std::vector input_shape_vec = framework::vectorize(input->dims()); std::vector filter_shape_vec = framework::vectorize(filter.dims()); size_t data_dim = filter_shape_vec.size() - 2; // 5 或者 7 std::vector col_shape_vec(1 + 2 * data_dim); // output c / groups col_shape_vec[0] = output->dims()[1] / groups; for (size_t i = 0; i < data_dim; ++i) { // filter shape filter h filter w col_shape_vec[i + 1] = filter_shape_vec[i + 2]; // input shape input h input w col_shape_vec[i + 1 + data_dim] = input_shape_vec[i + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); Tensor col; col.mutable_data

(col_shape); Tensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); framework::DDim output_shape = framework::slice_ddim(output->dims(), 1, output->dims().size()); framework::DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]}; // filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w) framework::DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]}; filter.Resize(filter_matrix_shape); output->mutable_data

(); int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; math::Col2ImFunctor col2im; math::Col2VolFunctor col2vol; for (int i = 0; i < batch_size; ++i) { Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape); for (int g = 0; g < groups; ++g) { Tensor in_slice = input_batch.Slice(g * in_step, (g + 1) * in_step); Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step); Tensor out_slice = output_batch.Slice(g * out_step, (g + 1) * out_step); math::matmul(filter_slice, true, in_slice, false, static_cast

(1.0), &col_matrix, static_cast

(0.0)); if (data_dim == 2U) { col2im(col, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &out_slice); } else if (data_dim == 3U) { col2vol(col, dilations, strides, paddings, &out_slice); } } } } } // namespace operators } // namespace paddle_mobile #endif