// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class MulCompute : public KernelLite { public: using param_t = operators::MulParam; void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "buffer/mat_mul_kernel.cl", build_options_, time_stamp_); const auto& param = *param_.get_mutable(); const auto* x_data = param.x->data(); const auto* y_data = param.y->data(); auto* o_data = param.output->mutable_data(); m_ = static_cast( param.x->dims().Slice(0, param.x_num_col_dims).production()); const int x_w = static_cast( param.x->dims() .Slice(param.x_num_col_dims, param.x->dims().size()) .production()); int y_h = static_cast( param.y->dims().Slice(0, param.y_num_col_dims).production()); n_ = static_cast( param.y->dims() .Slice(param.y_num_col_dims, param.y->dims().size()) .production()); CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h"; k_ = x_w; VLOG(4) << "m: " << m_ << " n_: " << n_ << " k_: " << k_ << " y_h: " << y_h << " x_w: " << x_w; } void Run() override { const auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* x_buf = param.x->data(); auto* y_buf = param.y->data(); auto* out_buf = param.output->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, *x_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *y_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, m_); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, n_); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, k_); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast((m_ + 3) / 4), static_cast((n_ + 3) / 4)}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_buf, event_); } private: int m_, n_, k_; std::string kernel_func_name_{"mat_mul"}; std::string build_options_{"-DCL_DTYPE_float"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( mul, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::MulCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize();