// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class DropoutComputeImage2D : public KernelLite { public: using param_t = operators::DropoutParam; std::string doc() const override { return "Dropout using cl::Image2D, kFP16"; } void PrepareForRun() override { auto& context = ctx_->As(); VLOG(1) << "kernel_func_name_:" << kernel_func_name_; context.cl_context()->AddKernel(kernel_func_name_, "image/dropout_kernel.cl", build_options_, time_stamp_); } void Run() override { const auto& param = *param_.get_mutable(); const auto& in_dims = param.x->dims(); const auto& out_dims = param.output->dims(); auto* x_img = param.x->data(); const float dropout_prob = param.dropout_prob; int input_dims[4] = {1, 1, 1, 1}; for (int i = 0; i < in_dims.size(); i++) { input_dims[4 - in_dims.size() + i] = in_dims[i]; } int out_w = input_dims[3]; auto out_image_shape = InitImageDimInfoWith(out_dims); auto* out_img = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dropout_prob); CL_CHECK_FATAL(status); const std::vector& default_work_size = DefaultWorkSize(out_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_img, event_); } private: std::string kernel_func_name_{"dropout"}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(dropout, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::DropoutComputeImage2D, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();