// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/lite_api_test_helper.h" #include "lite/api/paddle_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/tests/api/bert_utility.h" #include "lite/utils/cp_logging.h" DEFINE_string(data_dir, "", "data dir"); DEFINE_int32(iteration, 9, "iteration times to run"); namespace paddle { namespace lite { template lite::Tensor GetTensorWithShape(std::vector shape) { lite::Tensor ret; ret.Resize(shape); T* ptr = ret.mutable_data(); for (int i = 0; i < ret.numel(); ++i) { ptr[i] = (T)1; } return ret; } TEST(Ernie, test_ernie_fp32_baidu_xpu) { lite_api::CxxConfig config; config.set_model_dir(FLAGS_model_dir); config.set_valid_places({lite_api::Place{TARGET(kXPU), PRECISION(kFloat)}, lite_api::Place{TARGET(kX86), PRECISION(kFloat)}, lite_api::Place{TARGET(kHost), PRECISION(kFloat)}}); config.set_xpu_workspace_l3_size_per_thread(); auto predictor = lite_api::CreatePaddlePredictor(config); std::string input_data_file = FLAGS_data_dir + std::string("/bert_in.txt"); std::vector> input0; std::vector> input1; std::vector> input2; std::vector> input3; std::vector> input_shapes; ReadRawData( input_data_file, &input0, &input1, &input2, &input3, &input_shapes); for (int i = 0; i < FLAGS_warmup; ++i) { std::vector shape = {1, 64, 1}; std::vector fill_value(64, 0); for (int j = 0; j < 4; j++) { FillTensor(predictor, j, shape, fill_value); } predictor->Run(); } std::vector> out_rets; out_rets.resize(FLAGS_iteration); double cost_time = 0; for (int i = 0; i < FLAGS_iteration; ++i) { FillTensor(predictor, 0, input_shapes[i], input0[i]); FillTensor(predictor, 1, input_shapes[i], input1[i]); FillTensor(predictor, 2, input_shapes[i], input2[i]); FillTensor(predictor, 3, input_shapes[i], input3[i]); double start = GetCurrentUS(); predictor->Run(); cost_time += GetCurrentUS() - start; auto output_tensor = predictor->GetOutput(0); auto output_shape = output_tensor->shape(); auto output_data = output_tensor->data(); ASSERT_EQ(output_shape.size(), 2UL); ASSERT_EQ(output_shape[0], 1); ASSERT_EQ(output_shape[1], 1); int output_size = output_shape[0] * output_shape[1]; out_rets[i].resize(output_size); memcpy(&(out_rets[i].at(0)), output_data, sizeof(float) * output_size); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", iteration: " << FLAGS_iteration << ", spend " << cost_time / FLAGS_iteration / 1000.0 << " ms in average."; std::string ref_out_file = FLAGS_data_dir + std::string("/ernie_out.txt"); float out_accuracy = CalErnieOutAccuracy(out_rets, ref_out_file); ASSERT_GT(out_accuracy, 0.95f); } } // namespace lite } // namespace paddle