/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ==============================================================================*/ #pragma once #include "../test_include.h" #include "operators/batchnorm_op.h" namespace paddle_mobile { namespace framework { template class TestBatchNormOp { public: explicit TestBatchNormOp(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); // DLOG << " **block size " << blocks.size(); for (int i = 0; i < blocks.size(); ++i) { std::shared_ptr block_desc = blocks[i]; std::vector> ops = block_desc->Ops(); // DLOG << " ops " << ops.size(); for (int j = 0; j < ops.size(); ++j) { std::shared_ptr op = ops[j]; if (op->Type() == "batch_norm" && op->Input("X")[0] == "conv2d_0.tmp_0") { DLOG << " mul attr size: " << op->GetAttrMap().size(); DLOG << " inputs size: " << op->GetInputs().size(); DLOG << " outputs size: " << op->GetOutputs().size(); DLOG << " Input X is : " << op->Input("X")[0]; DLOG << " Input Mean is : " << op->Input("Mean")[0]; DLOG << " Input Variance is : " << op->Input("Variance")[0]; DLOG << " Input Scale is : " << op->Input("Scale")[0]; DLOG << " Input Bias is : " << op->Input("Bias")[0]; DLOG << " Output Y is : " << op->Output("Y")[0]; DLOG << " epsilon : " << op->GetAttrMap().at("epsilon").Get(); std::shared_ptr> lrn = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(lrn); } } } } std::shared_ptr predict_bn(Tensor &t1, Tensor &t2, Tensor &t3, Tensor &t4, Tensor &t5) { // feed auto scope = program_.scope; Variable *x1_feed_value = scope->Var("conv2d_0.tmp_0"); auto tensor_x1 = x1_feed_value->GetMutable(); tensor_x1->ShareDataWith(t1); Variable *mean_feed_value = scope->Var("batch_norm_0.w_1"); auto tensor_mean = mean_feed_value->GetMutable(); tensor_mean->ShareDataWith(t2); Variable *scale_feed_value = scope->Var("batch_norm_0.w_0"); auto tensor_scale = scale_feed_value->GetMutable(); tensor_scale->ShareDataWith(t3); Variable *variance_feed_value = scope->Var("batch_norm_0.w_2"); auto tensor_variance = variance_feed_value->GetMutable(); tensor_variance->ShareDataWith(t4); Variable *bias_feed_value = scope->Var("batch_norm_0.b_0"); auto tensor_bias = bias_feed_value->GetMutable(); tensor_bias->ShareDataWith(t5); Variable *output = scope->Var("batch_norm_0.tmp_2"); auto *output_tensor = output->GetMutable(); output_tensor->mutable_data({4, 10, 2, 2}); // DLOG << typeid(output_tensor).name(); // DLOG << "output_tensor dims: " << output_tensor->dims(); std::shared_ptr out_tensor = std::make_shared(); out_tensor.reset(output_tensor); predict_bn(t1, t2, t3, t4, t5, 0); return out_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; void predict_bn(const Tensor &t1, const Tensor &t2, const Tensor &t3, const Tensor &t4, const Tensor &t5, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; DLOG << "op -> run()"; op->Run(); } } }; template class TestBatchNormOp; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run BatchNormOp Test"; paddle_mobile::Loader loader; auto program = loader.Load(std::string( "../../test/models/image_classification_resnet.inference.model")); /// input x (4,10,2,2) paddle_mobile::framework::Tensor inputx1; SetupTensor(&inputx1, {4, 10, 2, 2}, static_cast(0), static_cast(1)); auto *inputx1_ptr = inputx1.data(); paddle_mobile::framework::Tensor mean; SetupTensor(&mean, {10}, static_cast(0), static_cast(1)); auto *mean_ptr = mean.data(); paddle_mobile::framework::Tensor scale; SetupTensor(&scale, {10}, static_cast(0), static_cast(1)); auto *scale_ptr = scale.data(); paddle_mobile::framework::Tensor variance; SetupTensor(&variance, {10}, static_cast(0), static_cast(1)); auto *variance_ptr = variance.data(); paddle_mobile::framework::Tensor bias; SetupTensor(&bias, {10}, static_cast(0), static_cast(1)); auto *bias_ptr = bias.data(); paddle_mobile::framework::TestBatchNormOp testBatchNormOp(program); auto output_bn = testBatchNormOp.predict_bn(inputx1, mean, scale, variance, bias); auto *output_bn_ptr = output_bn->data(); /// [2, 5, 1, 0] DLOG << " (" << inputx1_ptr[102] << " - " << mean_ptr[5] << ")/((" << variance_ptr[5] << " + 0.00001" << ")^0.5)* " << scale_ptr[5] << " + " << bias_ptr[5] << " = "; DLOG << output_bn_ptr[102]; return 0; }