/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef ACL_OPERATOR_H_ #define ACL_OPERATOR_H_ #include #include #if USE_ACL == 1 #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h" #include "arm_compute/runtime/NEON/functions/NEBatchNormalizationLayer.h" #include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h" #include "arm_compute/runtime/NEON/functions/NEDepthConcatenateLayer.h" #include "arm_compute/runtime/NEON/functions/NEDirectConvolutionLayer.h" #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h" #include "arm_compute/runtime/NEON/functions/NELocallyConnectedLayer.h" #include "arm_compute/runtime/NEON/functions/NENormalizationLayer.h" #include "arm_compute/runtime/NEON/functions/NEPoolingLayer.h" #include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h" #include "arm_compute/runtime/Tensor.h" #ifdef PADDLE_MOBILE_MALI_GPU #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/runtime/CL/CLScheduler.h" #include "arm_compute/runtime/CL/CLTensor.h" #include "arm_compute/runtime/CL/functions/CLActivationLayer.h" #include "arm_compute/runtime/CL/functions/CLBatchNormalizationLayer.h" #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h" #include "arm_compute/runtime/CL/functions/CLDepthConcatenateLayer.h" #include "arm_compute/runtime/CL/functions/CLDirectConvolutionLayer.h" #include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h" #include "arm_compute/runtime/CL/functions/CLLocallyConnectedLayer.h" #include "arm_compute/runtime/CL/functions/CLNormalizationLayer.h" #include "arm_compute/runtime/CL/functions/CLPoolingLayer.h" #include "arm_compute/runtime/CL/functions/CLSoftmaxLayer.h" #endif #ifdef USE_OPENGLES #include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h" #include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCActivationLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCBatchNormalizationLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCConvolutionLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCDepthConcatenateLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCDirectConvolutionLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCFullyConnectedLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCNormalizationLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCPoolingLayer.h" #include "arm_compute/runtime/GLES_COMPUTE/functions/GCSoftmaxLayer.h" #endif #include "acl_tensor.h" #define FLAGS_ENABLE_ACL_ABSVAL 0x00000001 #define FLAGS_ENABLE_ACL_BNLL 0x00000002 #define FLAGS_ENABLE_ACL_CONV 0x00000004 #define FLAGS_ENABLE_ACL_FC 0x00000008 #define FLAGS_ENABLE_ACL_LRN 0x00000010 #define FLAGS_ENABLE_ACL_POOLING 0x00000020 #define FLAGS_ENABLE_ACL_RELU 0x00000040 #define FLAGS_ENABLE_ACL_SIGMOID 0x00000080 #define FLAGS_ENABLE_ACL_SOFTMAX 0x00000100 #define FLAGS_ENABLE_ACL_TANH 0x00000200 #define FLAGS_ENABLE_ACL_LC 0x00000400 #define FLAGS_ENABLE_ACL_BN 0x00000800 #define FLAGS_ENABLE_ACL_CONCAT 0x00001000 extern unsigned int bypass_acl_class_layer; #ifdef USE_PROFILING #include #define NANO_SEC_CONV 1000000 #define MASK_LOG_APP_TIME 0x00000001 #define MASK_LOG_ALLOCATE 0x00000002 #define MASK_LOG_RUN 0x00000004 #define MASK_LOG_CONFIG 0x00000008 #define MASK_LOG_COPY 0x00000010 #define MASK_LOG_ABSVAL 0x00000020 #define MASK_LOG_BNLL 0x00000040 #define MASK_LOG_CONV 0x00000080 #define MASK_LOG_FC 0x00000100 #define MASK_LOG_LRN 0x00000200 #define MASK_LOG_POOLING 0x00000400 #define MASK_LOG_RELU 0x00000800 #define MASK_LOG_SIGMOID 0x00001000 #define MASK_LOG_SOFTMAX 0x00002000 #define MASK_LOG_TANH 0x00004000 #define MASK_LOG_LC 0x00008000 #define MASK_LOG_BN 0x00010000 #define MASK_LOG_CONCAT 0x00020000 #define APP_TIME_INFO MASK_LOG_APP_TIME, "time: \t" #define ACL_ALLOCATE_INFO MASK_LOG_ALLOCATE, "allocate: \t\t" #define ACL_RUN_INFO MASK_LOG_RUN, "run: \t\t\t" #define ACL_CONFIG_INFO MASK_LOG_CONFIG, "configure: \t\t\t\t" #define ACL_COPY_INFO MASK_LOG_COPY, "tensor_copy:\t\t\t\t\t" #define ACL_ABSVAL_INFO MASK_LOG_ABSVAL, "ACL_ABSVAL :\t\t\t\t\t\t" #define ACL_BNLL_INFO MASK_LOG_BNLL, "ACL_BNLL :\t\t\t\t\t\t\t" #define ACL_CONV_INFO MASK_LOG_CONV, "ACL_CONV :\t\t\t\t\t\t\t\t" #define ACL_FC_INFO MASK_LOG_FC, "ACL_FC :\t\t\t\t\t\t\t\t\t" #define ACL_LRN_INFO MASK_LOG_LRN, "ACL_LRN :\t\t\t\t\t\t\t\t\t\t" #define ACL_POOLING_INFO MASK_LOG_POOLING, "ACL_POOLING:\t\t\t\t\t\t\t\t\t\t\t" #define ACL_RELU_INFO MASK_LOG_RELU, "ACL_RELU :\t\t\t\t\t\t\t\t\t\t\t\t" #define ACL_SIGMOID_INFO \ MASK_LOG_SIGMOID, "ACL_SIGMOID:\t\t\t\t\t\t\t\t\t\t\t\t\t" #define ACL_SOFTMAX_INFO \ MASK_LOG_SOFTMAX, "ACL_SOFTMAX:\t\t\t\t\t\t\t\t\t\t\t\t\t\t" #define ACL_TANH_INFO \ MASK_LOG_TANH, "ACL_TANH :\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" #define ACL_LC_INFO MASK_LOG_LC, "ACL_LC :\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" #define ACL_BN_INFO \ MASK_LOG_BN, "ACL_BN :\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" #define ACL_CONCAT_INFO \ MASK_LOG_CONCAT, "ACL_CONCAT :\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t" extern unsigned int acl_log_flags; class logtime_util { public: logtime_util() { mask = 0; } logtime_util(int mask_, const char *information_) { setlogtime_info(mask_, information_); } void setlogtime_info(int mask_, const char *information_) { mask = mask_; if (acl_log_flags & mask) { strncpy(information, information_, 255); gettimeofday(&tv[0], NULL); } } ~logtime_util() { if (acl_log_flags & mask) { int time[2]; gettimeofday(&tv[1], NULL); time[0] = tv[0].tv_sec * NANO_SEC_CONV + tv[0].tv_usec; time[1] = tv[1].tv_sec * NANO_SEC_CONV + tv[1].tv_usec; printf("%s %.6lf\n", information, (((double)time[1] - time[0]) / NANO_SEC_CONV)); } } void log_time(bool start) { if (acl_log_flags & mask) { if (start) { gettimeofday(&tv[0], NULL); } else { int time[2]; gettimeofday(&tv[1], NULL); time[0] = tv[0].tv_sec * NANO_SEC_CONV + tv[0].tv_usec; time[1] = tv[1].tv_sec * NANO_SEC_CONV + tv[1].tv_usec; printf("%s %.6lf\n", information, (((double)time[1] - time[0]) / NANO_SEC_CONV)); } } } private: struct timeval tv[2]; int mask; char information[256]; }; #endif // USE_PROFILING namespace paddle_mobile { namespace operators { namespace acl { class AclParameters { public: AclParameters() { dilated = false; dim = 2; num_group = 1; } int batch; int in_depth; int in_rows; int in_cols; int out_depth; int out_rows; int out_cols; int out_num; int filter_rows; int filter_cols; int stride_rows; int stride_cols; int pad_rows; int pad_cols; int dilation_rows; int dilation_cols; int num_group; bool dilated; int dim; int epsilon; int nsize; float alpha; float beta; float knorm; void *input_data; void *output_data; void *weight_data; void *biases_data; void *mean_data; void *var_data; std::string pool_type; std::string act_type; std::string data_layout; bool is_global_pool; bool is_channel_concat; bool is_bypass; std::vector in_tensor; }; enum TensorType { tensor_input, tensor_output, tensor_weights, tensor_biases, tensor_mean, tensor_var, tensor_beta, tensor_gamma, tensor_concat, tensor_data, }; enum OperatorState { operator_not_init, operator_init_done, operator_reinit, }; enum OperateType { operate_type_pooling, operate_type_activation, operate_type_lrn, operate_type_conv, operate_type_lc, operate_type_fc, operate_type_bn, operate_type_softmax, operate_type_concat, }; class BaseACLTensor { public: BaseACLTensor() : type_(tensor_input), allocate_(false) {} virtual ~BaseACLTensor() {} virtual void bindmem(void *mem) { mem_ = mem; } virtual void settensortype(TensorType type) { type_ = type; } virtual void map(bool blocking = true) {} virtual void unmap() {} virtual void commit(TensorType type = tensor_data) {} int tensor_copy(arm_compute::ITensor *tensor, void *mem, bool toTensor = true); protected: void *mem_; TensorType type_; bool allocate_; }; class ACLTensor : public BaseACLTensor, public Tensor { public: explicit ACLTensor(arm_compute::TensorInfo &&info) : Tensor(info) {} virtual void map(bool blocking = true) { if (!allocate_) { Tensor::allocate(); allocate_ = true; } Tensor::map(blocking); } virtual int tensor_copy(void *mem, bool toTensor = true) { auto acl_tensor = this; arm_compute::ITensor *tensor = acl_tensor->tensor(); BaseACLTensor::tensor_copy(tensor, mem, toTensor); return 0; } virtual void unmap() { Tensor::unmap(); } virtual void commit(TensorType type = tensor_data); }; class ACLSubTensor : public BaseACLTensor, public SubTensor { public: ACLSubTensor(std::unique_ptr &parent, arm_compute::TensorShape &shape, arm_compute::Coordinates &coord) : SubTensor(parent.get(), shape, coord) {} virtual int tensor_copy(void *mem, bool toTensor = true) { return 0; } }; template class TensorPair { public: TensorPair() {} ~TensorPair() {} TensorType type; std::unique_ptr tensor; }; template std::unique_ptr &tensor_item( std::vector>> &pool, TensorType type, int idx) { int count = 0; for (auto &item : pool) { if (item.get()->type == type) { ++count; } if (item.get()->type == type && idx == count - 1) { return item.get()->tensor; } } pool.push_back((std::unique_ptr>)std::move(new TensorPair)); auto item = pool[pool.size() - 1].get(); item->type = type; item->tensor = NULL; return item->tensor; } class ACLOperator { public: virtual void commit() { for (auto &item : tensor_pool_) { if (item.get()->tensor) item.get()->tensor->commit(item.get()->type); } } inline void run() { commit(); #ifdef USE_PROFILING logtime_util log_time(ACL_RUN_INFO); #endif // USE_PROFILING for (auto &c : funcs_) { c->run(); } } inline std::vector> &funcs() { return funcs_; } inline std::unique_ptr &sinput(int idx = 0) { return tensor_item(subtensor_pool_, tensor_input, idx); } inline std::unique_ptr &soutput(int idx = 0) { return tensor_item(subtensor_pool_, tensor_output, idx); } inline std::unique_ptr &sweights(int idx = 0) { return tensor_item(subtensor_pool_, tensor_weights, idx); } inline std::unique_ptr &sbiases(int idx = 0) { return tensor_item(subtensor_pool_, tensor_biases, idx); } inline std::unique_ptr &cinput(int idx = 0) { return tensor_item(tensor_pool_, tensor_concat, idx); } inline std::unique_ptr &input(int idx = 0) { return tensor_item(tensor_pool_, tensor_input, idx); } inline std::unique_ptr &output(int idx = 0) { return tensor_item(tensor_pool_, tensor_output, idx); } inline std::unique_ptr &weights(int idx = 0) { return tensor_item(tensor_pool_, tensor_weights, idx); } inline std::unique_ptr &biases(int idx = 0) { return tensor_item(tensor_pool_, tensor_biases, idx); } inline std::unique_ptr &mean(int idx = 0) { return tensor_item(tensor_pool_, tensor_mean, idx); } inline std::unique_ptr &var(int idx = 0) { return tensor_item(tensor_pool_, tensor_var, idx); } inline std::unique_ptr &beta(int idx = 0) { return tensor_item(tensor_pool_, tensor_beta, idx); } inline std::unique_ptr &gamma(int idx = 0) { return tensor_item(tensor_pool_, tensor_gamma, idx); } inline std::unique_ptr &tensor(TensorType type) { switch (type) { case tensor_biases: return biases(); break; case tensor_weights: return weights(); break; case tensor_output: return output(); break; default: case tensor_input: return input(); break; } return input(); } explicit ACLOperator(bool is_gpu = false); virtual ~ACLOperator(); inline TargetHint getTargetHint() { #ifdef USE_OPENCL if (target_hint_ == TargetHint::DONT_CARE) { if (is_gpu_) { return TargetHint::OPENCL; } return TargetHint::NEON; } return target_hint_; #elif defined(USE_OPENGLES) if (target_hint_ == TargetHint::DONT_CARE) { if (is_gpu_) { return TargetHint::OPENGLES; } return TargetHint::NEON; } return target_hint_; #else return TargetHint::NEON; #endif } inline void setTargetHint(TargetHint hint) { target_hint_ = hint; } inline ConvolutionMethodHint &getConvMethod() { return convolution_method_hint_; } inline void setConvMethod() { convolution_method_hint_ = ConvolutionMethodHint::DIRECT; } inline bool tensor_mem(std::unique_ptr &tensor, void *mem) { tensor->bindmem(mem); return true; } inline bool tensor_mem(void *mem, std::unique_ptr &tensor) { tensor->tensor_copy(mem, false); return true; } bool new_tensor(std::unique_ptr &tensor, arm_compute::TensorShape &shape, void *mem = nullptr, bool commit = false); bool new_tensor(std::unique_ptr &tensor, std::unique_ptr &parent, arm_compute::TensorShape &shape, arm_compute::Coordinates &coord); inline int &group() { return _group; } inline void set_operator_property(OperateType type, const char *name) { name_ = name; type_ = type; } inline void acl_run(void *input_data, void *output_data) { if (input_data) tensor_mem(input(), input_data); run(); tensor_mem(output_data, output()); } inline int &input_idx() { return input_idx_; } inline int &output_idx() { return output_idx_; } protected: inline bool isGPUMode() { #ifdef USE_OPENCL if (!support_opencl_) return false; return getTargetHint() == TargetHint::OPENCL; #elif defined(USE_OPENGLES) if (!support_opengles_) return false; return getTargetHint() == TargetHint::OPENGLES; #endif return false; } inline OperatorState &opstate() { return operator_state_; } inline bool is_operator_init_done(arm_compute::TensorShape shape, TensorType type = tensor_input) { checkreshape(shape, type); return operator_state_ == operator_init_done; } inline void set_operator_init_done() { opstate() = operator_init_done; set_bypass_state(false); } inline void set_bypass_state(bool state = false) { force_bypass_acl_path_ = state; } inline OperatorState checkreshape(arm_compute::TensorShape shape, TensorType type = tensor_input) { opstate() = reshape(shape, type); if (opstate() == operator_reinit) { freeres(); } return opstate(); } inline OperatorState reshape(arm_compute::TensorShape &shape, TensorType type) { arm_compute::TensorShape _shape; std::unique_ptr &acl_tensor = tensor(type); if (!acl_tensor.get()) return operator_not_init; _shape = acl_tensor->info().tensor_shape(); if (_shape.total_size() == shape.total_size() && _shape[0] == shape[0] && _shape[1] == shape[1]) { return operator_init_done; } return operator_reinit; } inline void freeres() { tensor_pool_.clear(); subtensor_pool_.clear(); funcs_.clear(); } inline const char *&name() { return name_; } inline void set_in_out_index(int indata_idx, int outdata_idx) { input_idx() = indata_idx; output_idx() = outdata_idx; } protected: std::vector>> tensor_pool_; std::vector>> subtensor_pool_; std::vector> funcs_; OperatorState operator_state_; bool force_bypass_acl_path_; TargetHint target_hint_; ConvolutionMethodHint convolution_method_hint_; static bool support_opengles_; static bool support_opencl_; static bool init_gpu_env; int _group; const char *name_; OperateType type_; int input_idx_, output_idx_; bool is_gpu_; }; int isScheduleEnable(); template std::unique_ptr instantiate_function( arm_compute::ITensor *input, arm_compute::ITensor *output) { auto op = cpp14::make_unique(); op->configure(dynamic_cast(input), dynamic_cast(output)); return std::move(op); } template std::unique_ptr instantiate( arm_compute::ITensor *input, arm_compute::ITensor *output) { return instantiate_function(input, output); } template std::unique_ptr instantiate_op_func( std::unique_ptr &input, std::unique_ptr &output, TargetHint &hint) { std::unique_ptr func; func = instantiate(input->tensor(), output->tensor()); return func; } template std::unique_ptr instantiate_function( VectorTensor inputs, arm_compute::ITensor *output) { auto op = cpp14::make_unique(); op->configure(inputs, dynamic_cast(output)); return std::move(op); } template std::unique_ptr instantiate( VectorTensor inputs, arm_compute::ITensor *output) { return instantiate_function(inputs, output); } template std::unique_ptr instantiate_op_func_lists( ACLOperator *&acl_op, std::unique_ptr &output, int num, TargetHint &hint) { std::unique_ptr func; static std::vector tensors; tensors.clear(); for (int i = 0; i < num; ++i) { tensors.push_back( dynamic_cast(acl_op->cinput(i).get()->tensor())); } func = instantiate>( tensors, output->tensor()); return func; } template std::unique_ptr instantiate_function( arm_compute::ITensor *input, arm_compute::ITensor *output, const OperatorInfo &info) { auto op = cpp14::make_unique(); op->configure(dynamic_cast(input), dynamic_cast(output), info); return std::move(op); } template std::unique_ptr instantiate( arm_compute::ITensor *input, arm_compute::ITensor *output, const OperatorInfo &info) { return instantiate_function( input, output, info); } template std::unique_ptr instantiate_op_func( std::unique_ptr &input, std::unique_ptr &output, const OperatorInfo &info, TargetHint &hint) { std::unique_ptr func; func = instantiate(input->tensor(), output->tensor(), info); return func; } template std::unique_ptr instantiate_function( arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const OperatorInfo &info) { auto op = cpp14::make_unique(); op->configure(dynamic_cast(input), dynamic_cast(weights), dynamic_cast(biases), dynamic_cast(output), info); return std::move(op); } template std::unique_ptr instantiate( arm_compute::ITensor *input, arm_compute::ITensor *weights, arm_compute::ITensor *biases, arm_compute::ITensor *output, const OperatorInfo &info) { return instantiate_function( input, weights, biases, output, info); } template std::unique_ptr instantiate_op_func( std::unique_ptr &input, std::unique_ptr &weights, std::unique_ptr &biases, std::unique_ptr &output, const OperatorInfo &info, TargetHint &hint) { std::unique_ptr func; arm_compute::ITensor *biases_tensor = NULL; if (biases.get()) { biases_tensor = biases->tensor(); } func = instantiate( input->tensor(), weights->tensor(), biases_tensor, output->tensor(), info); return func; } template std::unique_ptr instantiate_function( arm_compute::ITensor *input, arm_compute::ITensor *output, arm_compute::ITensor *mean, arm_compute::ITensor *var, arm_compute::ITensor *beta, arm_compute::ITensor *gamma, Dtype &eps) { auto op = cpp14::make_unique(); op->configure( dynamic_cast(input), dynamic_cast(output), dynamic_cast(mean), dynamic_cast(var), dynamic_cast(beta), dynamic_cast(gamma), eps); return std::move(op); } template std::unique_ptr instantiate( arm_compute::ITensor *input, arm_compute::ITensor *output, arm_compute::ITensor *mean, arm_compute::ITensor *var, arm_compute::ITensor *beta, arm_compute::ITensor *gamma, Dtype eps) { return instantiate_function( input, output, mean, var, beta, gamma, eps); } template std::unique_ptr instantiate_op_func( std::unique_ptr &input, std::unique_ptr &output, std::unique_ptr &mean, std::unique_ptr &var, std::unique_ptr &beta, std::unique_ptr &gamma, Dtype eps, TargetHint hint) { std::unique_ptr func; func = instantiate( input->tensor(), output->tensor(), mean->tensor(), var->tensor(), beta->tensor(), gamma->tensor(), eps); return func; } template bool instantiate_op_pooling( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, const OperatorInfo &info) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back( instantiate_op_func(input, output, info, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back( instantiate_op_func(input, output, info, hint)); return true; } #endif { func.push_back( instantiate_op_func(input, output, info, hint)); } return true; } template bool instantiate_op_activation( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, const OperatorInfo &info) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back(instantiate_op_func( input, output, info, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back(instantiate_op_func( input, output, info, hint)); return true; } #endif { func.push_back(instantiate_op_func( input, output, info, hint)); } return true; } template bool instantiate_op_lrn( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, const OperatorInfo &info) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back(instantiate_op_func( input, output, info, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back(instantiate_op_func( input, output, info, hint)); return true; } #endif { func.push_back(instantiate_op_func( input, output, info, hint)); } return true; } template bool instantiate_op_conv( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, const OperatorInfo &info) { std::unique_ptr &weights = acl_op->weights(); std::unique_ptr &biases = acl_op->biases(); ConvolutionMethodHint &conv_method = acl_op->getConvMethod(); bool has_biases = biases.get() ? true : false; int &groups = acl_op->group(); arm_compute::TensorShape input_shape = input->info().tensor_shape(); arm_compute::TensorShape weights_shape = weights->info().tensor_shape(); arm_compute::TensorShape biases_shape; if (has_biases) { biases_shape = biases->info().tensor_shape(); } arm_compute::TensorShape output_shape = output->info().tensor_shape(); if (groups == 1) { if (conv_method == ConvolutionMethodHint::GEMM) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back(instantiate_op_func( acl_op->input(), acl_op->weights(), acl_op->biases(), acl_op->output(), info, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back(instantiate_op_func( acl_op->input(), acl_op->weights(), acl_op->biases(), acl_op->output(), info, hint)); return true; } #endif { func.push_back(instantiate_op_func( acl_op->input(), acl_op->weights(), acl_op->biases(), acl_op->output(), info, hint)); } } else { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back( instantiate_op_func( acl_op->input(), acl_op->weights(), acl_op->biases(), acl_op->output(), info, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back( instantiate_op_func( acl_op->input(), acl_op->weights(), acl_op->biases(), acl_op->output(), info, hint)); return true; } #endif { func.push_back( instantiate_op_func( acl_op->input(), acl_op->weights(), acl_op->biases(), acl_op->output(), info, hint)); } } return true; } // Calculate sub-tensor splits const int input_split = input_shape.z() / groups; const int output_split = output_shape.z() / groups; const int weights_split = weights_shape[3] / groups; const int biases_split = biases_shape.x() / groups; // Calculate sub-tensor shapes input_shape.set(2, input_split); output_shape.set(2, output_split); weights_shape.set(3, weights_split); biases_shape.set(0, biases_split); for (auto i = 0; i < groups; ++i) { // Calculate sub-tensors starting coordinates arm_compute::Coordinates input_coord(0, 0, input_split * i); arm_compute::Coordinates output_coord(0, 0, output_split * i); arm_compute::Coordinates weights_coord(0, 0, 0, weights_split * i); arm_compute::Coordinates biases_coord(biases_split * i); // Create sub-tensors for input, output, weights and bias acl_op->new_tensor(acl_op->sinput(i), acl_op->input(), input_shape, input_coord); acl_op->new_tensor(acl_op->soutput(i), acl_op->output(), output_shape, output_coord); acl_op->new_tensor(acl_op->sweights(i), acl_op->weights(), weights_shape, weights_coord); if (has_biases) { acl_op->new_tensor(acl_op->sbiases(i), acl_op->biases(), biases_shape, biases_coord); } bool use_opencl = false; if (conv_method == ConvolutionMethodHint::GEMM) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { use_opencl = true; func.push_back( instantiate_op_func( acl_op->sinput(i), acl_op->sweights(i), acl_op->sbiases(i), acl_op->soutput(i), info, hint)); } #endif if (!use_opencl) { func.push_back( instantiate_op_func( acl_op->sinput(i), acl_op->sweights(i), acl_op->sbiases(i), acl_op->soutput(i), info, hint)); } } else { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { use_opencl = true; func.push_back( instantiate_op_func( acl_op->sinput(i), acl_op->sweights(i), acl_op->sbiases(i), acl_op->soutput(i), info, hint)); } #endif if (!use_opencl) { func.push_back( instantiate_op_func( acl_op->sinput(i), acl_op->sweights(i), acl_op->sbiases(i), acl_op->soutput(i), info, hint)); } } } return true; } template bool instantiate_op_lc( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, const OperatorInfo &info) { std::unique_ptr &weights = acl_op->weights(); std::unique_ptr &biases = acl_op->biases(); #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back( instantiate_op_func( input, weights, biases, output, info, hint)); return true; } #endif { func.push_back( instantiate_op_func( input, weights, biases, output, info, hint)); } return true; } template bool instantiate_op_fc( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, const OperatorInfo &info) { std::unique_ptr &weights = acl_op->weights(); std::unique_ptr &biases = acl_op->biases(); #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back(instantiate_op_func( input, weights, biases, output, info, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back(instantiate_op_func( input, weights, biases, output, info, hint)); return true; } #endif { func.push_back(instantiate_op_func( input, weights, biases, output, info, hint)); } return true; } template bool instantiate_op_bn( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, Dtype eps) { std::unique_ptr &mean = acl_op->mean(); std::unique_ptr &var = acl_op->var(); std::unique_ptr &beta = acl_op->beta(); std::unique_ptr &gamma = acl_op->gamma(); #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back( instantiate_op_func(input, output, mean, var, beta, gamma, eps, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back( instantiate_op_func(input, output, mean, var, beta, gamma, eps, hint)); return true; } #endif { func.push_back( instantiate_op_func(input, output, mean, var, beta, gamma, eps, hint)); } return true; } inline bool instantiate_op_softmax( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, void *data) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back( instantiate_op_func(input, output, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back( instantiate_op_func(input, output, hint)); return true; } #endif { func.push_back( instantiate_op_func( input, output, hint)); } return true; } inline bool instantiate_op_concat( ACLOperator *acl_op, std::vector> &func, std::unique_ptr &input, std::unique_ptr &output, TargetHint hint, int num) { #ifdef USE_OPENCL if (hint == TargetHint::OPENCL) { func.push_back( instantiate_op_func_lists(acl_op, output, num, hint)); return true; } #elif defined(USE_OPENGLES) if (hint == TargetHint::OPENGLES) { func.push_back( instantiate_op_func_lists(acl_op, output, num, hint)); return true; } #endif { func.push_back( instantiate_op_func_lists(acl_op, output, num, hint)); } return true; } template void *InputdataPtr(ACLOperator *op, const std::vector &input_data, Dtype type, int index = -1) { if (index == -1) index = 0; return (void *)(input_data[index]->mutable_data()); } template void acl_run(ACLOperator *op, const std::vector &in_data, void *out_data, Dtype type, bool multi_input_run = true) { for (int i = 0; i < in_data.size(); ++i) { op->tensor_mem(op->cinput(i), InputdataPtr(op, in_data, type, i)); } op->acl_run(NULL, out_data); } } // namespace acl } // namespace operators } // namespace paddle_mobile #ifdef USE_PROFILING #define acl_configure(opname, acl_op, args...) \ { \ set_operator_property(acl::operate_type_##opname, #opname); \ logtime_util log_time(ACL_CONFIG_INFO); \ instantiate_op_##opname(acl_op, acl_op->funcs(), acl_op->input(), \ acl_op->output(), acl_op->getTargetHint(), args); \ } #else #define acl_configure(opname, acl_op, args...) \ { \ set_operator_property(acl::operate_type_##opname, #opname); \ instantiate_op_##opname(acl_op, acl_op->funcs(), acl_op->input(), \ acl_op->output(), acl_op->getTargetHint(), args); \ } #endif #define ACLOp_Ptr(a) dynamic_cast(a) #endif // USE_ACL #endif // ACL_OPERATOR_H_