// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * This file defines PaddlePredictor, the api for lite. It supports multiple * hardware including ARM, X86, OpenCL, CUDA and so on. */ #ifndef PADDLE_LITE_API_H_ // NOLINT #define PADDLE_LITE_API_H_ #include #include #include #include "paddle_place.h" // NOLINT namespace paddle { namespace lite_api { using shape_t = std::vector; using lod_t = std::vector>; enum class LiteModelType { kProtobuf = 0, kNaiveBuffer, UNK }; struct LITE_API Tensor { explicit Tensor(void* raw); explicit Tensor(const void* raw); void Resize(const shape_t& shape); /// Readonly data. template const T* data() const; template T* mutable_data(TargetType type = TargetType::kHost) const; template void CopyFromCpu(const T* data); template void CopyToCpu(T* data) const; /// Shape of the tensor. shape_t shape() const; TargetType target() const; PrecisionType precision() const; // LoD of the tensor lod_t lod() const; // Set LoD of the tensor void SetLoD(const lod_t& lod); private: void* raw_tensor_; }; /// The PaddlePredictor defines the basic interfaces for different kinds of /// predictors. class LITE_API PaddlePredictor { public: PaddlePredictor() = default; /// Get i-th input. virtual std::unique_ptr GetInput(int i) = 0; /// Get i-th output. virtual std::unique_ptr GetOutput(int i) const = 0; virtual void Run() = 0; virtual std::shared_ptr Clone() = 0; virtual std::string GetVersion() const = 0; // Get input names virtual std::vector GetInputNames() = 0; // Get output names virtual std::vector GetOutputNames() = 0; // Get output names virtual std::vector GetParamNames(); // Get Input by name virtual std::unique_ptr GetInputByName(const std::string& name) = 0; /// Get a readonly tensor, return null if no one called `name` exists. virtual std::unique_ptr GetTensor( const std::string& name) const = 0; /// Get a mutable tensor, return null if on one called `name` exists /// internal infereces API, not recommanded. virtual std::unique_ptr GetMutableTensor(const std::string& name); /// Persist the optimized model to disk. This API is only supported by /// CxxConfig, and the persisted model can be reused for MobileConfig. virtual void SaveOptimizedModel( const std::string& model_dir, LiteModelType model_type = LiteModelType::kProtobuf, bool record_info = false); virtual ~PaddlePredictor() = default; protected: int threads_{1}; lite_api::PowerMode mode_{lite_api::LITE_POWER_NO_BIND}; }; /// Base class for all the configs. class LITE_API ConfigBase { std::string model_dir_; int threads_{1}; PowerMode mode_{LITE_POWER_NO_BIND}; // to save subgraph model for npu/xpu/... std::string subgraph_model_cache_dir_{""}; public: explicit ConfigBase(PowerMode mode = LITE_POWER_NO_BIND, int threads = 1); // set Model_dir void set_model_dir(const std::string& x) { model_dir_ = x; } const std::string& model_dir() const { return model_dir_; } // set Power_mode void set_power_mode(PowerMode mode); PowerMode power_mode() const { return mode_; } // set Thread void set_threads(int threads); int threads() const { return threads_; } // set subgraph_model_dir void set_subgraph_model_cache_dir(std::string subgraph_model_cache_dir) { subgraph_model_cache_dir_ = subgraph_model_cache_dir; } const std::string& subgraph_model_cache_dir() const { return subgraph_model_cache_dir_; } }; /// CxxConfig is the config for the Full feature predictor. class LITE_API CxxConfig : public ConfigBase { std::vector valid_places_; std::string model_file_; std::string param_file_; std::vector passes_internal_{}; bool model_from_memory_{false}; #ifdef LITE_WITH_X86 int x86_math_library_math_threads_ = 1; #endif #ifdef LITE_WITH_CUDA bool multi_stream_{false}; #endif #ifdef LITE_WITH_MLU lite_api::MLUCoreVersion mlu_core_version_{lite_api::MLUCoreVersion::MLU_270}; int mlu_core_number_{1}; DataLayoutType mlu_input_layout_{DATALAYOUT(kNCHW)}; bool mlu_use_first_conv_{false}; std::vector mlu_first_conv_mean_; std::vector mlu_first_conv_std_; #endif public: void set_valid_places(const std::vector& x) { valid_places_ = x; } void set_model_file(const std::string& path) { model_file_ = path; } void set_param_file(const std::string& path) { param_file_ = path; } void set_model_buffer(const char* model_buffer, size_t model_buffer_size, const char* param_buffer, size_t param_buffer_size) { model_file_ = std::string(model_buffer, model_buffer + model_buffer_size); param_file_ = std::string(param_buffer, param_buffer + param_buffer_size); model_from_memory_ = true; } // internal inference to choose passes for model optimizing, // it's designed for internal developer and not recommanded // for comman users. void set_passes_internal( const std::vector& passes_internal = {}) { passes_internal_ = passes_internal; } const std::vector& get_passes_internal() const { return passes_internal_; } const std::vector& valid_places() const { return valid_places_; } std::string model_file() const { return model_file_; } std::string param_file() const { return param_file_; } bool model_from_memory() const { return model_from_memory_; } #ifdef LITE_WITH_X86 void set_x86_math_library_num_threads(int threads) { x86_math_library_math_threads_ = threads; } int x86_math_library_num_threads() const { return x86_math_library_math_threads_; } #endif #ifdef LITE_WITH_CUDA void set_multi_stream(bool multi_stream) { multi_stream_ = multi_stream; } bool multi_stream() const { return multi_stream_; } #endif #ifdef LITE_WITH_MLU // set MLU core version, which is used when compiling MLU kernels void set_mlu_core_version(lite_api::MLUCoreVersion core_version); // set MLU core number, which is used when compiling MLU kernels void set_mlu_core_number(int core_number); // set MLU input layout. User can specify layout of input data to be NHWC, // default is NCHW void set_mlu_input_layout(DataLayoutType layout); // whether use MLU's first conv kernel. First conv is a special kernel // provided by MLU, its input is uint8, and also needs two 3-dimentional // vectors which save all inputs' mean and std values void set_mlu_use_first_conv(bool use_first_conv); // set the 3-dimentional mean vector used by MLU's first conv void set_mlu_first_conv_mean(const std::vector& mean); // set the 3-dimentional std vector used by MLU's first conv void set_mlu_first_conv_std(const std::vector& std); lite_api::MLUCoreVersion mlu_core_version() const; int mlu_core_number() const; DataLayoutType mlu_input_layout() const; bool mlu_use_first_conv() const; const std::vector& mlu_first_conv_mean() const; const std::vector& mlu_first_conv_std() const; #endif // XPU only, set the size of the workspace memory from L3 cache for the // current thread. void set_xpu_workspace_l3_size_per_thread(int l3_size = 0xfffc00); // XPU only, specify the target device ID for the current thread. // **DEPRECATED**, use xpu_set_device() at the very beginning of each worker // thread void set_xpu_dev_per_thread(int dev_no = 0); }; /// MobileConfig is the config for the light weight predictor, it will skip /// IR optimization or other unnecessary stages. class LITE_API MobileConfig : public ConfigBase { // whether to load data from memory. Model data will be loaded from memory // buffer if model_from_memory_ is true. bool model_from_memory_{false}; // model data readed from file or memory buffer in combined format. std::string lite_model_file_; // NOTE: This is a deprecated variable and will be removed in latter release. std::string model_buffer_; std::string param_buffer_; public: // set model data in combined format, `set_model_from_file` refers to loading // model from file, set_model_from_buffer refers to loading model from memory // buffer void set_model_from_file(const std::string& x); void set_model_from_buffer(const std::string& x); // return model data in lite_model_file_, which is in combined format. const std::string& lite_model_file() const { return lite_model_file_; } // return model_from_memory_, which indicates whether to load model from // memory buffer. bool model_from_memory() const { return model_from_memory_; } // NOTE: This is a deprecated API and will be removed in latter release. void set_model_buffer(const char* model_buffer, size_t model_buffer_size, const char* param_buffer, size_t param_buffer_size); // NOTE: This is a deprecated API and will be removed in latter release. const std::string& model_buffer() const { return model_buffer_; } // NOTE: This is a deprecated API and will be removed in latter release. const std::string& param_buffer() const { return param_buffer_; } }; template LITE_API std::shared_ptr CreatePaddlePredictor(const ConfigT&); } // namespace lite_api } // namespace paddle #endif // NOLINT