// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ai_ddk_lib/include/graph/buffer.h" #include "ai_ddk_lib/include/graph/graph.h" #include "ai_ddk_lib/include/graph/model.h" #include "ai_ddk_lib/include/graph/op/all_ops.h" #include "ai_ddk_lib/include/graph/operator.h" #include "ai_ddk_lib/include/graph/operator_reg.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utils.h" namespace paddle { namespace lite { namespace kernels { namespace npu { namespace bridges { node_map_type ConvTransposeConverter( const std::shared_ptr conv_transpose_op, const node_map_type& inputs_map) { auto scope = conv_transpose_op->scope(); auto op_info = conv_transpose_op->op_info(); auto op_type = op_info->Type(); auto unique_op_type = UniqueName(op_type); LOG(INFO) << "Converting " << op_type << "... "; // get input, output and op attributes auto input_var_name = op_info->Input("Input").front(); auto input = scope->FindVar(input_var_name)->GetMutable(); auto input_shape = input->dims().Vectorize(); auto filter_var_name = op_info->Input("Filter").front(); auto filter = scope->FindVar(filter_var_name)->GetMutable(); auto filter_shape = filter->dims().Vectorize(); CHECK_EQ(input_shape.size(), 4); CHECK_EQ(filter_shape.size(), 4); auto strides = op_info->GetAttr>("strides"); auto paddings = op_info->GetAttr>("paddings"); auto groups = op_info->GetAttr("groups"); auto dilations = op_info->GetAttr>("dilations"); auto fuse_relu = op_info->GetAttr("fuse_relu"); CHECK_EQ(strides.size(), 2); CHECK_EQ(paddings.size(), 2); CHECK_EQ(dilations.size(), 2); // create deconv node auto conv_transpose_node = std::make_shared(unique_op_type); // create input sizes node to describe the dimensions of input tensor std::vector output_shape; output_shape.push_back(input_shape[0]); output_shape.push_back(filter_shape[1] * groups); for (int i = 0; i < strides.size(); i++) { int kernel_ext = dilations[i] * (filter_shape[i + 2] - 1) + 1; int output_size = (input_shape[i + 2] - 1) * strides[i] + kernel_ext - 2 * paddings[i]; output_shape.push_back(output_size); } auto input_sizes_const_node = std::make_shared(unique_op_type + "/input_size"); input_sizes_const_node->set_attr_value(CreateTensorAndFillData(output_shape)); conv_transpose_node->set_input_input_sizes(*input_sizes_const_node); OpList::Global().add(input_sizes_const_node); // create filter node CHECK(!inputs_map.count(filter_var_name)); auto filter_const_node = std::make_shared(filter_var_name); filter_const_node->set_attr_value(CvtFromLiteTensor(filter)); conv_transpose_node->set_input_filter(*filter_const_node); OpList::Global().add(filter_const_node); // set input node CHECK(inputs_map.count(input_var_name)); conv_transpose_node->set_input_x(*inputs_map.at(input_var_name)); OpList::Global().add(inputs_map.at(input_var_name)); // set attributes conv_transpose_node->set_attr_mode(1); conv_transpose_node->set_attr_format(0); // NCHW conv_transpose_node->set_attr_pad_mode(0); // NOTSET conv_transpose_node->set_attr_group(groups); conv_transpose_node->set_attr_pad(ge::AttrValue::LIST_INT( {paddings[0], paddings[0], paddings[1], paddings[1]})); conv_transpose_node->set_attr_dilation( ge::AttrValue::LIST_INT({dilations[0], dilations[1]})); conv_transpose_node->set_attr_stride( ge::AttrValue::LIST_INT({strides[0], strides[1]})); conv_transpose_node->set_attr_kernel( ge::AttrValue::LIST_INT({filter_shape[2], filter_shape[3]})); OpList::Global().add(conv_transpose_node); // append add node to add bias if has bias std::shared_ptr output_node = conv_transpose_node; if (HasInputArg(op_info, scope, "Bias")) { // create bias node auto bias_var_name = op_info->Input("Bias").front(); CHECK(!inputs_map.count(bias_var_name)); auto* bias = scope->FindVar(bias_var_name)->GetMutable(); auto channel_size = bias->dims().production(); CHECK_EQ(channel_size, filter_shape[1] * groups); auto bias_const_node = std::make_shared(bias_var_name); bias_const_node->set_attr_value( CvtFromLiteTensor(bias, {1, channel_size, 1, 1})); OpList::Global().add(bias_const_node); // append add node to add bias node auto add_node = std::make_shared(unique_op_type + "/add"); add_node->set_input_x1(*conv_transpose_node); add_node->set_input_x2(*bias_const_node); OpList::Global().add(add_node); output_node = add_node; } node_map_type outputs_map; if (fuse_relu) { // append relu node if fuse_relu is true auto relu_node = std::make_shared(unique_op_type + "/relu"); relu_node->set_input_x(*output_node); relu_node->set_attr_mode(1); OpList::Global().add(relu_node); outputs_map[op_info->Output("Output").front()] = relu_node; } else { outputs_map[op_info->Output("Output").front()] = output_node; } return outputs_map; } } // namespace bridges } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_NPU_BRIDGE( conv2d_transpose, paddle::lite::kernels::npu::bridges::ConvTransposeConverter);