// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include //NOLINT #include #include #include #include "lite/api/paddle_api.h" #include "lite/core/op_lite.h" #include "lite/core/optimizer.h" #include "lite/core/program.h" #include "lite/core/types.h" #include "lite/model_parser/model_parser.h" namespace paddle { namespace lite { static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] = ".tailored_ops_source_list"; static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list"; static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] = ".tailored_kernels_source_list"; static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list"; std::vector GetAllOps(); /* * Predictor for inference, input a model, it will optimize and execute it. */ class LITE_API Predictor { public: // Create an empty predictor. Predictor() { scope_ = std::make_shared(); program_desc_ = std::make_shared(); } // Create a predictor with the weight variable scope set. explicit Predictor(const std::shared_ptr& root_scope) : scope_(root_scope) {} Predictor(const std::shared_ptr& desc, const std::shared_ptr& root, const std::vector& valid_places, const std::vector& var_names = {}) : program_desc_(desc), scope_(root) { Program program(*desc.get(), scope_, valid_places, var_names); optimizer_ = Optimizer(std::move(program), valid_places); exec_scope_ = optimizer_.exec_scope(); valid_places_ = valid_places; } // Build from a model, with places set for hardware config. void Build( const lite_api::CxxConfig& config, const std::vector& valid_places, const std::vector& passes = {}, lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf); void Build( const std::string& model_path, const std::string& model_file_path, const std::string& param_file_path, const std::vector& valid_places, const std::vector& passes = {}, lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf, bool memory_from_memory = false); void Build(const std::shared_ptr& desc, const std::vector& valid_places, const std::vector& passes = {}); std::shared_ptr Clone() const { auto predictor = std::make_shared(program_desc_, scope_, valid_places_); return predictor; } std::shared_ptr Clone( const std::vector& var_names) const { CHECK(program_desc_) << "Both program and scope of current predicotr " "should be not be nullptr in Clone mode."; CHECK(scope_) << "Both program and scope of current predicotr should be " "not be nullptr in Clone mode."; auto predictor = std::make_shared( program_desc_, scope_, valid_places_, var_names); for (auto i : var_names) { predictor->exec_scope_->LocalVar(i); auto* tensor = predictor->scope_->Var(i)->GetMutable(); auto* sub_tensor = predictor->exec_scope_->Var(i)->GetMutable(); sub_tensor->CopyDataFrom(*tensor); } return predictor; } void GenRuntimeProgram(); // Run the predictor for a single batch of data. void Run() { if (!program_generated_) { GenRuntimeProgram(); } program_->Run(); } // Get offset-th col of feed inputs. lite::Tensor* GetInput(size_t offset); // get input by name. lite::Tensor* GetInputByName(const std::string& name); // get inputnames and get outputnames. std::vector GetInputNames(); std::vector GetOutputNames(); // get param names std::vector GetParamNames(); void PrepareFeedFetch(); // Get offset-th col of fetch results. const lite::Tensor* GetOutput(size_t offset) const; std::vector GetOutputs() const; const cpp::ProgramDesc& program_desc() const; // get a mutable tensor according to its name lite::Tensor* GetMutableTensor(const std::string& name); // get a const tensor according to its name const lite::Tensor* GetTensor(const std::string& name) const; const RuntimeProgram& runtime_program() const; // This method is disabled in mobile, for unnecessary dependencies required. void SaveModel( const std::string& dir, lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf, bool record_info = false); void SaveOpKernelInfo(const std::string& model_dir); // #ifdef LITE_WITH_TRAIN // void Run(const std::vector& tensors) { // FeedVars(tensors); // program_->Run(); // } // void FeedVars(const std::vector& tensors); // #endif private: Optimizer optimizer_; std::shared_ptr program_desc_; std::shared_ptr scope_; Scope* exec_scope_; std::unique_ptr program_; bool program_generated_{false}; std::vector input_names_; std::vector output_names_; std::vector valid_places_; }; class CxxPaddleApiImpl : public lite_api::PaddlePredictor { public: CxxPaddleApiImpl() { raw_predictor_ = std::make_shared(); status_is_cloned_ = false; } explicit CxxPaddleApiImpl(const std::shared_ptr& raw_predictor) : raw_predictor_(raw_predictor) { status_is_cloned_ = true; } /// Create a new predictor from a config. void Init(const lite_api::CxxConfig& config); std::unique_ptr GetInput(int i) override; std::unique_ptr GetOutput(int i) const override; void Run() override; std::shared_ptr Clone() override; std::shared_ptr Clone( const std::vector& var_names) override; std::string GetVersion() const override; // get inputs names and get outputs names std::vector GetInputNames() override; std::vector GetOutputNames() override; // get param names std::vector GetParamNames() override; // get tensor according to tensor's name std::unique_ptr GetTensor( const std::string& name) const override; // get a mutable tensor according to tensor's name std::unique_ptr GetMutableTensor( const std::string& name) override; // Get InputTebsor by name std::unique_ptr GetInputByName( const std::string& name) override; void SaveOptimizedModel( const std::string& model_dir, lite_api::LiteModelType model_type = lite_api::LiteModelType::kProtobuf, bool record_info = false) override; private: std::shared_ptr raw_predictor_; lite_api::CxxConfig config_; std::mutex mutex_; bool status_is_cloned_; }; /* * An executor for training. * * Usage: * * CXXTrainer trainer(...); * trainer.RunStartupProgram(...); * auto exe = BuildMainProgramExecutor(...); * * for (auto& epoch : epoches) { * auto* tensor0 = exe.GetInput(...); * // fill data for tensor0 * exe.Run(); * } #ifdef LITE_WITH_X86 class LITE_API CXXTrainer { public: CXXTrainer(const std::shared_ptr& root_scope, const std::vector& valid_places) : scope_(root_scope), valid_places_(valid_places), main_program_executor_(Predictor(scope_)) {} // Build the RuntimeProgram cache for the main program. The cache will run // multiple times for the epoches. // NOTE Just support to execute the 0-th block currently. Predictor& BuildMainProgramExecutor(const framework::proto::ProgramDesc& desc, int block_id = 0) { main_program_executor_.Build(desc, valid_places_); return main_program_executor_; } #ifdef LITE_WITH_TRAIN Predictor& BuildMainProgramExecutor(framework::ProgramDesc& desc) { // NOLINT return BuildMainProgramExecutor(*desc.Proto()); } void RunStartupProgram(framework::ProgramDesc& desc) { // NOLINT RunStartupProgram(*desc.Proto()); } #endif // Run the startup program. It just executes once, no cache needed. void RunStartupProgram(const framework::proto::ProgramDesc& desc, int block_id = 0) { Predictor exe(scope_); exe.Build(desc, valid_places_); exe.Run(); } private: std::shared_ptr scope_; std::vector valid_places_; // The training program. Predictor main_program_executor_; }; #endif */ } // namespace lite } // namespace paddle