// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class ConcatComputeImage : public KernelLite { public: using param_t = operators::ConcatParam; void PrepareForRun() override { auto& context = ctx_->As(); concat_param_ = param_.get_mutable(); if (concat_param_->x.size() == 2) { kernel_func_name_ = "concat2"; } else { kernel_func_name_ = "concat_mul"; } VLOG(1) << "kernel_func_name_:" << kernel_func_name_; context.cl_context()->AddKernel(kernel_func_name_, "image/concat_kernel.cl", build_options_, time_stamp_); auto axis = concat_param_->axis; auto inputs = concat_param_->x; auto out_dims = concat_param_->output->dims(); auto* axis_tensor = concat_param_->axis_tensor; if (axis_tensor != nullptr) { // auto* axis_tensor_data = axis_tensor->data(TARGET(kARM)); // axis = axis_tensor_data[0]; } auto in_dims = inputs[0]->dims(); axis_size_ = out_dims[axis]; axis_ = axis; if (out_dims.size() < 4) { if (out_dims.size() - axis == 1) { // width width_ = out_dims[1]; // c flag_ = 3; } else { // height width_ = out_dims[0]; // n flag_ = 2; } } else { switch (axis_) { case 0: width_ = out_dims[2]; // h flag_ = 0; break; case 1: // channel width_ = out_dims[3]; // w flag_ = 1; break; case 2: // height width_ = out_dims[0]; // n flag_ = 2; break; case 3: case -1: // width width_ = out_dims[1]; // c flag_ = 3; break; default: printf("this axis: %d does not support \n", axis_); } } for (int i = 1; i < inputs.size(); i++) { auto dims = inputs[i]->dims(); // auto flag = CHECK_EQ_OR_FALSE(in_dims.size(), dims.size()); if (in_dims.size() != dims.size()) { printf("input shape must be same \n"); return; } for (int i = 0; i < dims.size(); i++) { if (i != axis) { if (in_dims[i] != dims[i]) { printf("input shape must be same \n"); return; } } } } } void Run() override { auto& param = *param_.get_mutable(); const auto& x_dims = param.output->dims(); auto image_shape = InitImageDimInfoWith(x_dims); auto* out_buf = param.output->mutable_data( image_shape["width"], image_shape["height"]); const auto& y_dims = param.output->dims(); // useless: check dim only auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto inputs = param.x; int arg_idx = 0; int width = inputs[0]->dims()[inputs[0]->dims().size() - 1]; #ifdef LITE_WITH_LOG VLOG(4) << "concat input shape: "; for (size_t i = 0; i < inputs.size(); i++) { VLOG(4) << "inputs [" << i << "]" << "[" << inputs[i]->dims().size() << "D]:" << " dims:" << inputs[i]->dims()[0] << " " << inputs[i]->dims()[1] << " " << inputs[i]->dims()[2] << " " << inputs[i]->dims()[3]; } VLOG(4) << "concat output shape: "; VLOG(4) << " out dims: " << "[" << x_dims.size() << "D]:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(4) << "axis_: " << axis_; VLOG(4) << "flag_: " << flag_; #endif auto global_work_size = cl::NDRange{static_cast(x_dims[x_dims.size() - 1]), static_cast(image_shape["width"] / x_dims[x_dims.size() - 1]), static_cast(image_shape["height"])}; #ifdef LITE_WITH_LOG VLOG(4) << TargetToStr(param.output->target()); VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " " << image_shape["height"]; VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3] << "x_dims[x_dims.size() - 1]" << x_dims[x_dims.size() - 1]; VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " " << y_dims[1] << " " << y_dims[2] << " " << y_dims[3]; VLOG(4) << "width_: " << width_ << ", flag_: " << flag_; VLOG(4) << "global_work_size: " << x_dims[x_dims.size() - 1] << " " << (image_shape["width"] / x_dims[x_dims.size() - 1]) << " " << (image_shape["height"]); #endif auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int out_w = x_dims[x_dims.size() - 1]; int out_c = x_dims[1]; if (inputs.size() == 2) { auto* x_buf0 = inputs[0]->data(); auto* x_buf1 = inputs[1]->data(); cl_int status = kernel.setArg(arg_idx, *x_buf0); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *x_buf1); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, flag_); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(inputs[0]->dims()[axis_])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_c); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, width_); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr); CL_CHECK_FATAL(status); } else { auto start = 0; for (int i = 0; i < inputs.size(); i++) { arg_idx = 0; auto in_dims = inputs[i]->dims(); image_shape = InitImageDimInfoWith(in_dims); auto* x_buf = inputs[i]->data(); int in_w = in_dims[in_dims.size() - 1]; #ifdef LITE_WITH_LOG VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " " << image_shape["height"]; #endif global_work_size = cl::NDRange{static_cast(in_dims[in_dims.size() - 1]), static_cast(image_shape["width"] / in_dims[in_dims.size() - 1]), static_cast(image_shape["height"])}; cl_int status = kernel.setArg(arg_idx, *x_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, flag_); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, start); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_c); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, out_w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, in_w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, width_); CL_CHECK_FATAL(status); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr); CL_CHECK_FATAL(status); start += inputs[i]->dims()[axis_]; } } } std::string doc() { return "Concat using cl::Image, kFP16"; } int axis_size_ = 1; int axis_ = 1; int flag_ = 1; int width_ = 1; param_t* concat_param_{nullptr}; std::string kernel_func_name_{}; std::string build_options_{" -DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle typedef paddle::lite::kernels::opencl::ConcatComputeImage Concat_image; REGISTER_LITE_KERNEL( concat, kOpenCL, kFP16, kImageDefault, Concat_image, ImageDefault) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindInput("AxisTensor", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kInt32), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();