// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" #include "lite/tests/utils/fill_data.h" namespace paddle { namespace lite { template class LookupTableComputeTest : public arena::TestCase { protected: // common attributes for this op. std::string op_type_ = "lookup_table"; std::string ids_ = "ids"; std::string w_ = "w"; std::string out_ = "out"; DDim ids_dims_{{2, 1}}; DDim w_dims_{{8, 4}}; int64_t padding_idx_ = -1; public: LookupTableComputeTest(const Place& place, const std::string& alias, const DDim& ids_dims, const DDim& w_dims, int64_t padding_idx) : TestCase(place, alias), ids_dims_(ids_dims), w_dims_(w_dims), padding_idx_(padding_idx) {} void RunBaseline(Scope* scope) override { auto ids = scope->FindTensor(ids_); auto w = scope->FindTensor(w_); auto ids_dims = ids->dims(); auto w_dims = w->dims(); auto out = scope->NewTensor(out_); CHECK(out); int ids_rank = ids_dims.size(); CHECK_EQ(ids_dims[ids_rank - 1], 1); CHECK_EQ(w_dims.size(), 2); std::vector out_dims; for (int i = 0; i < ids_rank - 1; ++i) { out_dims.push_back(ids_dims[i]); } out_dims.push_back(w_dims[1]); out->Resize(out_dims); out->set_lod(ids->lod()); auto ids_data = ids->data(); auto ids_size = ids_dims.production(); auto w_data = w->data(); auto w_rows = w_dims[0]; auto w_cols = w_dims[1]; auto out_data = out->mutable_data(); for (int64_t i = 0; i < ids_size; i++) { auto id = ids_data[i]; if (padding_idx_ != -1 && id == padding_idx_) { memset(out_data + i * w_cols, 0, w_cols * sizeof(float)); } else { CHECK_LT(id, w_rows) << "lookup_table ids[i] expected < " << w_rows << " but got " << id; CHECK_GE(id, 0) << "lookup_table ids[i] expected >= 0 but got " << id; memcpy(out_data + i * w_cols, w_data + id * w_cols, w_cols * sizeof(float)); } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType(op_type_); op_desc->SetInput("Ids", {ids_}); op_desc->SetInput("W", {w_}); op_desc->SetOutput("Out", {out_}); op_desc->SetAttr("padding_idx", padding_idx_); } void PrepareData() override { std::vector ids(ids_dims_.production()); fill_data_rand(ids.data(), 0, w_dims_[0] - 1, ids_dims_.production()); std::vector w(w_dims_.production()); fill_data_rand(w.data(), -1.f, 1.f, w_dims_.production()); SetCommonTensor(ids_, ids_dims_, ids.data()); SetCommonTensor(w_, w_dims_, w.data()); } }; TEST(LookupTable, precision) { LOG(INFO) << "test lookup_table op"; float abs_error = 1e-5; Place place; #if defined(LITE_WITH_NPU) place = TARGET(kNPU); abs_error = 1e-2; #elif defined(LITE_WITH_ARM) place = TARGET(kARM); #elif defined(LITE_WITH_XPU) place = TARGET(kXPU); #else return; #endif #if defined(LITE_WITH_NPU) using ID_T = int; #else using ID_T = int64_t; #endif for (auto ids_dims : std::vector>{{5, 2, 3, 1}, {2, 3, 1}, {3, 1}}) { for (auto w_dims : std::vector>{{4, 2}, {6, 8}, {12, 15}}) { #if defined(LITE_WITH_XPU) && defined(LITE_WITH_NPU) for (auto padding_idx : std::vector{-1}) { // Only -1 is supported by XPU or NPU #else for (auto padding_idx : std::vector{-1, 0, w_dims[0] - 1}) { #endif std::unique_ptr tester( new LookupTableComputeTest( place, "def", DDim(ids_dims), DDim(w_dims), padding_idx)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision(); } } } } } // namespace lite } // namespace paddle