/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "../test_include.h" #include "operators/prior_box_op.h" namespace paddle_mobile { namespace framework { template class TestPriorBoxOp { public: explicit TestPriorBoxOp(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); // DLOG << " **block size " << blocks.size(); for (auto block_desc : blocks) { std::vector> ops = block_desc->Ops(); // DLOG << " ops " << ops.size(); for (auto op : ops) { if (op->Type() == "prior_box" && op->Input("Input")[0] == "batch_norm_26.tmp_3") { DLOG << " mul attr size: " << op->GetAttrMap().size(); DLOG << " inputs size: " << op->GetInputs().size(); DLOG << " outputs size: " << op->GetOutputs().size(); DLOG << " Input is : " << op->Input("Input")[0]; DLOG << " Image is : " << op->Input("Image")[0]; DLOG << " Output Boxes is : " << op->Output("Boxes")[0]; DLOG << " Output Variances is : " << op->Output("Variances")[0]; DLOG << " offset : " << op->GetAttrMap().at("offset").Get(); DLOG << " step_h : " << op->GetAttrMap().at("step_h").Get(); DLOG << " step_w : " << op->GetAttrMap().at("step_w").Get(); DLOG << " flip : " << op->GetAttrMap().at("flip").Get(); DLOG << " clip : " << op->GetAttrMap().at("clip").Get(); // DLOG << " variances : " << // op->GetAttrMap().at("variances").Get>(); // DLOG << " aspect_ratios : " << // op->GetAttrMap().at("aspect_ratios").Get>(); // DLOG << " min_sizes : " << // op->GetAttrMap().at("min_sizes").Get>(); // DLOG << " max_sizes : " << // op->GetAttrMap().at("max_sizes").Get>(); std::shared_ptr> priorbox = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(priorbox); } } } } std::shared_ptr predict_priorbox(const Tensor &t1, const Tensor &t2) { // feed auto scope = program_.scope; Variable *x1_feed_value = scope->Var("image"); auto tensor_x1 = x1_feed_value->GetMutable(); tensor_x1->ShareDataWith(t1); Variable *x2_feed_value = scope->Var("batch_norm_26.tmp_3"); auto tensor_x2 = x2_feed_value->GetMutable(); tensor_x2->ShareDataWith(t2); Variable *boxes_output = scope->Var("prior_box_1.tmp_0"); auto *boxes_output_tensor = boxes_output->GetMutable(); boxes_output_tensor->mutable_data({10, 10, 6, 4}); Variable *variances_output = scope->Var("prior_box_1.tmp_1"); auto *variances_output_tesnor = variances_output->GetMutable(); variances_output_tesnor->mutable_data({10, 10, 6, 4}); // DLOG << typeid(output_tensor).name(); // DLOG << "output_tensor dims: " << output_tensor->dims(); std::shared_ptr outboxes_tensor = std::make_shared(); outboxes_tensor.reset(boxes_output_tensor); std::shared_ptr outvars_tensor = std::make_shared(); outvars_tensor.reset(variances_output_tesnor); predict_priorbox(t1, t2, 0); return outboxes_tensor; // return outvars_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; void predict_priorbox(const Tensor &t1, const Tensor &t2, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; DLOG << "op -> run()"; op->Run(); } } }; template class TestPriorBoxOp; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run PriorBoxOp Test"; paddle_mobile::Loader loader; auto program = loader.Load(std::string(g_mobilenet_ssd)); /// input x (1,3,300,300) paddle_mobile::framework::Tensor input_image; SetupTensor(&input_image, {1, 3, 300, 300}, static_cast(0), static_cast(1)); auto *input_image_ptr = input_image.data(); paddle_mobile::framework::Tensor inputx1; SetupTensor(&inputx1, {1, 1024, 10, 10}, static_cast(0), static_cast(1)); auto *inputx1_ptr = inputx1.data(); paddle_mobile::framework::TestPriorBoxOp testPriorBoxOp( program); auto output_priorbox = testPriorBoxOp.predict_priorbox(input_image, inputx1); auto *output_priorbox_ptr = output_priorbox->data(); for (int i = 0; i < output_priorbox->numel(); i++) { DLOG << output_priorbox_ptr[i]; } return 0; }