// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "lite/api/paddle_place.h" #include "lite/core/scope.h" #include "lite/core/tensor.h" #include "lite/core/types.h" #include "lite/model_parser/cpp/block_desc.h" #include "lite/model_parser/desc_apis.h" #include "lite/utils/all.h" /* * This file contains all the argument parameter data structure for operators. */ namespace paddle { namespace lite { namespace operators { using param_t = Any; #define WITH_INT8_CONFIG \ bool enable_int8{false}; \ float input_scale{1.0}; \ std::vector weight_scale{}; \ float output_scale{1.0}; /// ----------------------- Functional operators ------------------------------ struct FeedParam { std::vector* feed_list{}; lite::Tensor* out{}; int col; }; struct FetchParam { const lite::Tensor* input{}; std::vector* fetch_list{}; int col; }; // Helper op for lite framework struct IoCopyParam { const lite::Tensor* x{}; lite::Tensor* y{}; }; struct LayoutParam { const lite::Tensor* x{}; lite::Tensor* y{}; }; struct CalibParam { const lite::Tensor* input{}; lite::Tensor* output{}; float scale; }; struct GraphParam { std::vector inputs{}; std::vector outputs{}; std::string model_name{"model"}; }; /// -------------------------- NN operators ------------------------------------ struct FcParam { lite::Tensor* input{nullptr}; lite::Tensor* w{nullptr}; lite::Tensor* bias{nullptr}; lite::Tensor* output{nullptr}; lite::DDim in_mat_dims; int in_num_col_dims{1}; bool weight_transposed{false}; // for int8 WITH_INT8_CONFIG }; // For Interpolate Op struct InterpolateParam { lite::Tensor* X{}; lite::Tensor* OutSize{}; lite::Tensor* Out{}; float scale{0.f}; int out_h{-1}; int out_w{-1}; bool align_corners{true}; std::string interp_method{"Nearest"}; }; // For Mul Op struct MulParam { const lite::Tensor* x{}; const lite::Tensor* y{}; lite::Tensor* output{}; int x_num_col_dims{1}; int y_num_col_dims{1}; // for int8 WITH_INT8_CONFIG }; struct MulGradParam { const lite::Tensor* x{}; const lite::Tensor* y{}; const lite::Tensor* output_grad{}; lite::Tensor* x_grad{}; lite::Tensor* y_grad{}; int x_num_col_dims{1}; int y_num_col_dims{1}; }; // For ReduceMean Op struct ReduceMeanParam { lite::Tensor* X{}; lite::Tensor* Out{}; std::vector dim; bool keep_dim{false}; }; // For Stack Op struct StackParam { std::vector X; lite::Tensor* Out{}; int axis{0}; }; // For Power Op struct PowerParam { const lite::Tensor* X{}; lite::Tensor* Out{}; float scale{}; float shift{}; float power{}; }; struct ShuffleChannelParam { const lite::Tensor* X{}; lite::Tensor* Out{}; int group; }; // For Yolobox struct YoloBoxParam { lite::Tensor* X{}; lite::Tensor* ImgSize{}; lite::Tensor* Boxes{}; lite::Tensor* Scores{}; std::vector anchors{}; int class_num{0}; float conf_thresh{0.f}; int downsample_ratio{0}; }; // For Scale Op struct ScaleParam { lite::Tensor* x{}; lite::Tensor* output{}; float scale{1.}; float bias{}; bool bias_after_scale{true}; }; // For Softmax op struct SoftmaxParam { lite::Tensor* x{}; lite::Tensor* output{}; int axis{-1}; }; // For Reshape and Reshape2 Op struct ReshapeParam { const lite::Tensor* x{}; const lite::Tensor* actual_shape{nullptr}; lite::Tensor* output{}; lite::Tensor* xshape{}; std::vector shape{}; bool inplace{false}; }; // For Concat op struct ConcatParam { std::vector x{}; lite::Tensor* output{}; int axis{0}; }; /// ----------------------- activation operators ---------------------- struct ActivationParam { const lite::Tensor* X{}; float Leaky_relu_alpha{0}; // leaky_relu param float Relu_clipped_coef{6}; // relu_clipped param std::string Prelu_mode{ "channel"}; // prelu param, can be "all", "channel" or "element" lite::Tensor* Prelu_alpha{}; // prelu param float Swish_beta; // swish param float hard_sigmoid_slope{0.2}; float hard_sigmoid_offset{0.5}; lite::Tensor* Out{}; bool has_active{false}; lite_api::ActivationType active_type; }; struct ActivationGradParam { const lite::Tensor* X{}; const lite::Tensor* Out{}; // for backward lite::Tensor* X_grad{}; const lite::Tensor* Out_grad{}; }; // For Convolution op struct ConvParam { lite::Tensor* x{}; lite::Tensor* filter{}; lite::Tensor* bias{nullptr}; lite::Tensor* residualData{nullptr}; lite::Tensor* output{}; std::vector strides{1, 1}; std::vector paddings{0, 0}; int groups{1}; std::vector dilations{1, 1}; bool fuse_relu_before_depthwise_conv{false}; bool use_mkldnn{false}; bool fuse_relu{false}; // only used in mkldnn kernel bool use_quantizer{ false}; // set true for op that should be quantized, only used for cpu bool fuse_residual_connection{false}; float scale_in{1.0f}; // only used with mkl-dnn int8 float scale_out{1.0f}; // only used with mkl-dnn int8 float scale_in_eltwise{1.0f}; // only used with mkl-dnn int8 float scale_weights{1.0f}; // only used with mkl-dnn int8 bool force_fp32_output{false}; // only used in mkl-dnn int8 std::string data_format{"Anylayout"}; // for activation ActivationParam activation_param; // for int8 WITH_INT8_CONFIG }; // For BatchNorm op struct BatchNormParam { lite::Tensor* x{}; lite::Tensor* bias{}; lite::Tensor* scale{}; lite::Tensor* mean{}; lite::Tensor* variance{}; lite::Tensor* y{}; lite::Tensor* mean_out{}; lite::Tensor* variance_out{}; lite::Tensor* saved_mean{}; lite::Tensor* saved_variance{}; bool is_test{true}; bool use_global_stats{false}; float epsilon; float momentum; DataLayoutType data_layout{DATALAYOUT(kNCHW)}; }; // For Pooling op struct PoolParam { lite::Tensor* x{}; lite::Tensor* output{}; std::string pooling_type{""}; std::vector ksize{}; bool global_pooling{ false}; // if true, knernel size and paddings will be ignored std::vector strides{1, 1}; std::vector paddings{0, 0}; bool exclusive{true}; bool adaptive{false}; bool ceil_mode{false}; bool use_quantizer{false}; std::string data_format{"AnyLayout"}; }; // For Dropout op struct DropoutParam { const lite::Tensor* x{}; lite::Tensor* output{}; lite::Tensor* mask{}; float dropout_prob{.5f}; bool is_test{false}; bool fix_seed{false}; int seed{0}; std::string dropout_implementation{"downgrade_in_infer"}; }; // For Split op struct SplitParam { lite::Tensor* x{}; std::vector output{}; int axis{-1}; int num{0}; std::vector sections; }; // For Transpose op struct TransposeParam { const lite::Tensor* x{}; lite::Tensor* output{}; std::vector axis; bool use_mkldnn{false}; std::string data_format{"AnyLayout"}; }; /// ----------------------- element wise operators ---------------------- struct ElementwiseParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; int axis{-1}; // for broadcasting. }; struct ElementwiseGradParam { const lite::Tensor* Y{}; const lite::Tensor* Out_grad{}; lite::Tensor* X_grad{}; lite::Tensor* Y_grad{}; int axis{-1}; // for broadcasting. }; struct FusionElementwiseActivationParam : public ElementwiseParam { std::string act_type; }; struct FusionElementwiseActivationGradParam : public ElementwiseGradParam { std::string act_type; }; /// ----------------------- mean operators ---------------------- struct MeanParam { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct MeanGradParam { const lite::Tensor* X{}; const lite::Tensor* Out_grad{}; // for backward lite::Tensor* X_grad{}; }; /// ----------------------- fill_constant operators ---------------------- struct FillConstantParam { int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; std::vector shape{}; float value{0.0f}; // useless for x86, keep it for compatibility bool force_cpu{false}; lite::Tensor* Out{}; }; // struct FakeQuantizeMovingAvgMaxAbsParam { const lite::Tensor* x{}; const lite::Tensor* in_scale{}; const lite::Tensor* in_accum{}; const lite::Tensor* in_state{}; lite::Tensor* out{}; lite::Tensor* out_scale{}; lite::Tensor* out_state{}; lite::Tensor* out_accum{}; int bit_length; bool is_test{true}; float moving_rate{0.9}; }; struct FakeDequantizeMaxAbsParam { const lite::Tensor* x{}; const lite::Tensor* in_scale{}; lite::Tensor* out{}; float max_range; }; /// ----------------------- sgd operators ---------------------- struct SGDParam { int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; const lite::Tensor* Param{}; const lite::Tensor* LearningRate{}; const lite::Tensor* Grad{}; lite::Tensor* ParamOut{}; }; /// ----------------------- uniform_random operators ---------------------- struct UniformRandomParam { std::vector shape{}; float min{-1.0f}; float max{1.0f}; int seed{0}; int dtype{static_cast(VarDescAPI::VarDataType::FP32)}; lite::Tensor* Out{}; }; /// ----------------------- negative operators -------------- struct NegativeParam { const lite::Tensor* X{}; lite::Tensor* Out{}; }; /// ----------------------- pad2d operators ---------------------- struct Pad2dParam { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector paddings{0, 0, 0, 0}; std::string mode{"constant"}; float pad_value = 0.f; std::string data_format{"NCHW"}; }; /// ----------------------- Crop operators ---------------------- struct CropParam { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector offsets; std::vector shape; }; ///----------------------- argmax operators ---------------------- struct ArgmaxParam { lite::Tensor* X{}; lite::Tensor* Out{}; int Axis{0}; }; ///----------------------- axpy operators ---------------------- struct AxpyParam { lite::Tensor* Scale{}; lite::Tensor* X{}; lite::Tensor* Bias{}; lite::Tensor* Out{}; }; /// ----------------------- GRU unit operators ----------------------f struct GRUUnitParam { enum ActType { identity, sigmoid, tanh, relu }; const lite::Tensor* input{nullptr}; const lite::Tensor* hidden_prev{nullptr}; const lite::Tensor* weight{nullptr}; const lite::Tensor* bias{nullptr}; lite::Tensor* gate{nullptr}; lite::Tensor* reset_hidden_prev{nullptr}; lite::Tensor* hidden{nullptr}; int gate_activation{ActType::sigmoid}; int activation{ActType::tanh}; bool origin_mode{false}; }; /// ------------------------------ lrn operators ------------------------------ struct LrnParam { const lite::Tensor* X{}; lite::Tensor* Out{}; int local_size{5}; float alpha{1.}; float beta{0.75}; float k{1.}; std::string norm_region{"AcrossChannels"}; }; /// ----------------------- decode_bboxes operators ---------------------- struct DecodeBboxesParam { const lite::Tensor* loc_data{}; const lite::Tensor* prior_data{}; lite::Tensor* bbox_data{}; int batch_num; int num_priors; int num_loc_classes{0}; int background_label_id{0}; bool share_location{true}; bool variance_encoded_in_target; // code_type: corner, cente_size, corner_size std::string code_type; }; /// ----------------------- box_coder operators ---------------------- struct BoxCoderParam { const lite::Tensor* prior_box{}; const lite::Tensor* prior_box_var{}; const lite::Tensor* target_box{}; lite::Tensor* proposals{}; // code_type: encode_center_size and decode_center_size std::string code_type{"encode_center_size"}; bool box_normalized{true}; int axis{0}; std::vector variance{}; }; /// ----------------------- multiclass_nms operators ---------------------- struct MulticlassNmsParam { const lite::Tensor* bboxes{}; const lite::Tensor* scores{}; lite::Tensor* out{}; int background_label{0}; float score_threshold{}; int nms_top_k{}; float nms_threshold{0.3}; float nms_eta{1.0}; int keep_top_k; bool normalized{true}; }; /// ----------------------- priorbox operators ---------------------- struct PriorBoxParam { lite::Tensor* input{}; lite::Tensor* image{}; lite::Tensor* boxes{}; lite::Tensor* variances{}; bool flip; bool clip; std::vector min_sizes; std::vector max_sizes; std::vector aspect_ratios; std::vector variances_; int img_w{0}; int img_h{0}; float step_w{0}; float step_h{0}; float offset{0.5}; int prior_num{0}; // priortype: prior_min, prior_max, prior_com std::vector order; bool min_max_aspect_ratios_order{false}; }; struct DensityPriorBoxParam : public PriorBoxParam { std::vector fixed_sizes; std::vector fixed_ratios; std::vector density_sizes; }; /// ----------------------- GRU operators ----------------------f struct GRUParam { const lite::Tensor* input{nullptr}; const lite::Tensor* h0{nullptr}; const lite::Tensor* weight{nullptr}; const lite::Tensor* bias{nullptr}; lite::Tensor* batch_gate{nullptr}; lite::Tensor* batch_reset_hidden_prev{nullptr}; lite::Tensor* batch_hidden{nullptr}; lite::Tensor* hidden{nullptr}; std::string gate_activation{"sigmoid"}; std::string activation{"tanh"}; bool is_reverse{false}; bool origin_mode{false}; }; /// ----------------------- BeamSearchDecode operators ----------------------f struct BeamSearchDecodeParam { std::vector* ids{nullptr}; std::vector* scores{nullptr}; lite::Tensor* sentence_ids{nullptr}; lite::Tensor* sentence_scores{nullptr}; int beam_size; int end_id; }; /// ----------------------- LookupTable operators ----------------------f struct LookupTableParam { lite::Tensor* W{nullptr}; lite::Tensor* Ids{nullptr}; lite::Tensor* Out{nullptr}; int64_t padding_idx{-1}; }; struct Im2SequenceParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; std::vector kernels{3, 3}; std::vector strides{1, 1}; std::vector paddings{0, 0, 0, 0}; std::vector out_strides{1, 1}; }; struct SequenceSoftmaxParam { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct NormParam { const lite::Tensor* X{}; lite::Tensor* Out{}; int axis{1}; float epsilon{1e-10}; }; struct LogicalParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; }; struct CompareParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; bool force_cpu{0}; int axis{-1}; lite::Tensor* Out{}; }; struct WhileParam { Scope* scope{}; Tensor* cond{}; cpp::BlockDesc* sub_block{}; std::vector x{}; std::vector outs{}; }; struct TopkParam { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* Indices{}; int K{1}; }; struct IncrementParam { const lite::Tensor* X{}; lite::Tensor* Out{}; float step{1}; }; struct WriteToArrayParam { const lite::Tensor* X{}; const lite::Tensor* I{}; std::vector* Out{}; }; struct ReadFromArrayParam { std::vector* X{}; lite::Tensor* I{}; lite::Tensor* Out{}; }; struct BeamSearchParam { const lite::Tensor* pre_ids{}; const lite::Tensor* pre_scores{}; const lite::Tensor* ids{}; const lite::Tensor* scores{}; lite::Tensor* selected_ids{}; lite::Tensor* selected_scores{}; lite::Tensor* parent_idx{}; int level; int beam_size; int end_id; bool is_accumulated; }; struct SequencePoolParam { const lite::Tensor* X{}; lite::Tensor* Out{}; std::string pool_type{"AVERAGE"}; #ifdef LITE_WITH_X86 float pad_value{0.0}; #endif }; struct SequenceExpandParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; int ref_level{-1}; }; struct SequenceExpandAsParam { const lite::Tensor* x{nullptr}; const lite::Tensor* y{nullptr}; lite::Tensor* out{nullptr}; }; struct ReduceMaxParam { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector dim{}; bool keep_dim{false}; }; struct LodResetParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; std::vector target_lod; bool append; }; struct IsEmptyParam { const lite::Tensor* X{}; lite::Tensor* Out{}; }; /// ----------------------- shape operators ---------------------- struct ShapeParam { const lite::Tensor* X{}; lite::Tensor* Out{}; }; struct CastParam { const lite::Tensor* X{}; lite::Tensor* Out{}; int out_dtype{2}; int in_dtype{2}; }; struct SliceParam { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector axes{}; std::vector starts{}; std::vector ends{}; std::vector decrease_axis{}; }; struct AffineChannelParam { const lite::Tensor* X{}; // X is 4D tensor const lite::Tensor* Scale{}; const lite::Tensor* Bias{}; std::string data_layout{"NCHW"}; // optional string from: NHWC, NCHW. lite::Tensor* Out{}; }; struct AnchorGeneratorParam { const lite::Tensor* Input{}; std::vector anchor_sizes{}; std::vector aspect_ratios{}; std::vector stride{}; std::vector variances{{0.1, 0.1, 0.2, 0.2}}; float offset{0.5}; lite::Tensor* Anchors{}; lite::Tensor* Variances{}; }; struct GenerateProposalsParam { // inputs const lite::Tensor* Scores{}; const lite::Tensor* BboxDeltas{}; const lite::Tensor* ImInfo{}; lite::Tensor* Anchors{}; lite::Tensor* Variances{}; // attrs int pre_nms_topN{6000}; int post_nms_topN{1000}; float nms_thresh{0.5}; float min_size{0.1}; float eta{1.0}; // outputs lite::Tensor* RpnRois{}; lite::Tensor* RpnRoiProbs{}; }; /// ----------------------- squeeze operators ---------------------- struct SqueezeParam { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* XShape{}; std::vector axes{}; }; struct UnsqueezeParam { const lite::Tensor* X{}; lite::Tensor* Out{}; lite::Tensor* XShape{}; std::vector axes{}; }; /// ----------------------- expand operators ---------------------- struct ExpandParam { const lite::Tensor* X{}; lite::Tensor* Out{}; std::vector expand_times{}; }; /// ----------------------- matmul operators ---------------------- struct MatMulParam { const lite::Tensor* X{}; const lite::Tensor* Y{}; lite::Tensor* Out{}; bool transpose_X{false}; bool transpose_Y{false}; float alpha{1.0f}; }; /// ----------------------- assign operators ----------------------- struct AssignParam { const lite::Tensor* X{}; lite::Tensor* Out{}; }; /// ----------------------- roi_align operators ----------------------- struct RoiAlignParam { lite::Tensor* X{}; lite::Tensor* ROIs{}; lite::Tensor* Out{}; float spatial_scale{1.0}; int pooled_height{1}; int pooled_width{1}; int sampling_ratio{-1}; }; /// ----------------------- box_clip operators ----------------------- struct BoxClipParam { const lite::Tensor* Input{}; const lite::Tensor* ImInfo{}; lite::Tensor* Output{}; }; struct RangeParam { const lite::Tensor* Start; const lite::Tensor* End; const lite::Tensor* Step; lite::Tensor* Out; }; /// ----------------------- assign_value operators ----------------------- struct AssignValueParam { std::vector shape{}; int dtype{}; std::vector fp32_values{}; std::vector int32_values{}; lite::Tensor* Out{}; }; } // namespace operators } // namespace lite } // namespace paddle