// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/sequence_expand_as_compute.h" #include #include #include #include #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { TEST(sequence_expand_as_x86, retrive_op) { auto sequence_expand_as = KernelRegistry::Global().Create( "sequence_expand_as"); ASSERT_FALSE(sequence_expand_as.empty()); ASSERT_TRUE(sequence_expand_as.front()); } TEST(sequence_expand_as_x86, init) { SequenceExpandAsCompute sequence_expand_as; ASSERT_EQ(sequence_expand_as.precision(), PRECISION(kFloat)); ASSERT_EQ(sequence_expand_as.target(), TARGET(kX86)); } TEST(sequence_expand_as_x86, run_test) { lite::Tensor x, y, out; std::vector x_shape{4, 1}; x.Resize(lite::DDim(x_shape)); std::vector y_shape{1, 5}; y.Resize(lite::DDim(y_shape)); std::vector out_shape{8, 1}; out.Resize(lite::DDim(out_shape)); auto x_data = x.mutable_data(); auto y_data = y.mutable_data(); for (int64_t i = 0; i < x.dims().production(); i++) { x_data[i] = static_cast(i); } for (int64_t i = 0; i < y.dims().production(); i++) { y_data[i] = static_cast(i); } std::vector> lod{{0, 3, 6, 7, 8}}; y.set_lod(lod); // MulCompute mul; SequenceExpandAsCompute sequence_expand_as; operators::SequenceExpandAsParam param; param.x = &x; param.y = &y; param.out = &out; std::unique_ptr ctx(new KernelContext); ctx->As(); sequence_expand_as.SetContext(std::move(ctx)); sequence_expand_as.SetParam(param); sequence_expand_as.Run(); auto out_data = out.mutable_data(); int index = 1; int lod_sum = lod[0][index]; LOG(INFO) << "output: "; for (int i = 0; i < out.dims().production(); i++) { LOG(INFO) << out_data[i]; if (i >= lod_sum) { index++; lod_sum = lod[0][index]; } ASSERT_EQ(out_data[i], x_data[index - 1]); } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(sequence_expand_as, kX86, kFloat, kNCHW, def);