/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "CL/cl.h" #include "framework/cl/cl_half.h" #include "framework/ddim.h" #include "framework/tensor.h" namespace paddle_mobile { namespace framework { class CLImage { public: CLImage() = default; void Init(cl_context context, float *tensorInput, DDim ddim) { tensor_dims_ = ddim; if (tensorInput) { tensor_input_ = tensorInput; } else { int numel = 1; for (int i = 0; i < ddim.size(); i++) { numel *= ddim[i]; } tensor_input_ = static_cast( paddle_mobile::memory::Alloc(sizeof(float) * numel)); for (int i = 0; i < numel; i++) { tensor_input_[i] = 0; } } cl_image_format cf = {.image_channel_order = CL_RGBA, .image_channel_data_type = CL_HALF_FLOAT}; // NCHW -> [W * (C+3)/4, H * N] DLOG << tensor_dims_; size_t N, C, H, W; if (tensor_dims_.size() == 4) { N = tensor_dims_[0]; if (N < 0) { N = 1; } C = tensor_dims_[1]; H = tensor_dims_[2]; W = tensor_dims_[3]; width_of_one_block_ = W; height_of_one_block_ = H; } else if (tensor_dims_.size() == 1) { N = 1; C = tensor_dims_[0]; H = 1; W = 1; width_of_one_block_ = W; height_of_one_block_ = H; } size_t width = W * ((C + 3) / 4); size_t height = H * N; image_width_ = width; image_height_ = height; std::unique_ptr imageData{}; int count = 0; imageData.reset(new half_t[width * height * 4]); if (tensor_input_ != nullptr) { float *p = tensor_input_; size_t i0 = 0; for (int n = 0; n < N; n++) { for (int c = 0; c < C; c++) { size_t i1 = i0; for (int h = 0; h < H; h++) { size_t i2 = (i1 << 2) + c % 4; for (int w = 0; w < W; w++) { // if (i2 >= width * height * 4) { // printf("%d > %d ----> %d, %d, %d, %d --- %d, %d, // %d\n", i2, // width * height * 4, n, c, h, w, i0, i1, // i2); // } // assert(i2 < width * height * 4); imageData[i2] = float2half(*p); i2 += 4; p++; // count++; // DLOG<(imageData.get()), // void *host_ptr &err); if (err != CL_SUCCESS) { // TODO(HaiPeng): error handling PADDLE_MOBILE_THROW_EXCEPTION(" create image 2d error "); } initialized_ = true; } void Init(cl_context context, DDim ddim) { Init(context, nullptr, ddim); } inline CLImage &Resize(const DDim &dims) { tensor_dims_ = dims; return *this; } const DDim &dims() const { return tensor_dims_; } cl_mem GetCLImage() const { return cl_image_; } template T *data() const { return reinterpret_cast(tensor_input_); } inline int64_t numel() const { return product(tensor_dims_); } inline size_t ImageWidth() const { return image_width_; } inline size_t ImageHeight() const { return image_height_; } inline size_t CBlock() const { return c_block_; } inline size_t WidthOfOneBlock() const { return width_of_one_block_; } inline size_t HeightOfOneBlock() const { return height_of_one_block_; } private: bool initialized_ = false; cl_mem cl_image_; size_t image_width_; size_t width_of_one_block_; size_t height_of_one_block_; size_t image_height_; size_t c_block_; DDim tensor_dims_; float *tensor_input_; cl_context context_; }; void TensorToCLImage(Tensor *tensor, CLImage *image, cl_command_queue commandQueue); void CLImageToTensor(CLImage *image, Tensor *tensor, cl_command_queue commandQueue); } // namespace framework } // namespace paddle_mobile