// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" #include "lite/tests/utils/fill_data.h" namespace paddle { namespace lite { class DropoutComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string type_ = "dropout"; std::string x_ = "x"; std::string out_ = "out"; std::string mask_ = "mask"; DDim dims_{{1}}; float dropout_prob_ = 0.5; bool fix_seed_ = true; int seed_ = 1; std::string dropout_implementation_ = "downgrade_in_infer"; public: DropoutComputeTester(const Place& place, const std::string& alias, DDim dims, float dropout_prob, bool fix_seed, int seed, std::string dropout_implementation) : TestCase(place, alias), dims_(dims), dropout_prob_(dropout_prob), fix_seed_(fix_seed), seed_(seed), dropout_implementation_(dropout_implementation) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(out_); CHECK(out); out->Resize(dims_); auto* output_data = out->mutable_data(); auto* x = scope->FindTensor(x_); const auto* x_data = x->data(); if (dropout_implementation_ == "downgrade_in_infer") { float rate = 1 - dropout_prob_; for (int64_t i = 0; i < dims_.production(); i++) { output_data[i] = x_data[i] * rate; } } else if (dropout_implementation_ == "upscale_in_train") { memcpy(output_data, x_data, sizeof(float) * dims_.production()); } else { LOG(FATAL) << "unsupported dropout_implementation: " << dropout_implementation_; } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType(type_); op_desc->SetInput("X", {x_}); op_desc->SetOutput("Out", {out_}); op_desc->SetOutput("Mask", {mask_}); op_desc->SetAttr("dropout_prob", dropout_prob_); op_desc->SetAttr("fix_seed", fix_seed_); op_desc->SetAttr("seed", seed_); op_desc->SetAttr("dropout_implementation", dropout_implementation_); } void PrepareData() override { std::vector x(dims_.production()); fill_data_rand(x.data(), -1.f, 1.f, dims_.production()); SetCommonTensor(x_, dims_, x.data()); } }; TEST(Dropout, precision) { LOG(INFO) << "test dropout op"; float abs_error = 2e-5; Place place; #if defined(LITE_WITH_XPU) place = TARGET(kXPU); #else return; #endif for (auto dims : std::vector>{ {3}, {3, 4}, {3, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}}) { for (auto dropout_prob : {0., 0.5, 1.}) { for (auto dropout_implementation : {"downgrade_in_infer", "upscale_in_train"}) { std::unique_ptr tester( new DropoutComputeTester(place, "def", DDim(dims), dropout_prob, true, 1, dropout_implementation)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision({"mask"}); } } } } } // namespace lite } // namespace paddle