// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/host/activation_grad_compute.h" namespace paddle { namespace lite { namespace kernels { namespace host { void SquareGradCompute::Run() { auto& param = this->Param(); CHECK(param.X); auto out_grad_dims = param.Out_grad->dims(); auto out_grad_data = param.Out_grad->data(); auto x_data = param.X->data(); auto x_grad_data = param.X_grad->mutable_data(); for (int i = 0; i < out_grad_dims.production(); i++) { x_grad_data[i] = out_grad_data[i] * 2.0 * x_data[i]; } } void ReluGradCompute::Run() { auto& param = this->Param(); CHECK(param.X); auto out_grad_dims = param.Out_grad->dims(); auto out_grad_data = param.Out_grad->data(); auto x_data = param.X->data(); auto x_grad_data = param.X_grad->mutable_data(); for (int i = 0; i < out_grad_dims.production(); i++) { x_grad_data[i] = x_data[i] > 0 ? out_grad_data[i] : 0.0; } } void TanhGradCompute::Run() { auto& param = this->Param(); CHECK(param.Out); auto out_grad_dims = param.Out_grad->dims(); auto out_grad_data = param.Out_grad->data(); auto out_data = param.Out->data(); auto x_grad_data = param.X_grad->mutable_data(); for (int i = 0; i < out_grad_dims.production(); i++) { x_grad_data[i] = out_grad_data[i] * (static_cast(1.0) - out_data[i] * out_data[i]); } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(square_grad, kHost, kFloat, kNCHW, paddle::lite::kernels::host::SquareGradCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize(); REGISTER_LITE_KERNEL(relu_grad, kHost, kFloat, kNCHW, paddle::lite::kernels::host::SquareGradCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize(); REGISTER_LITE_KERNEL(tanh_grad, kHost, kFloat, kNCHW, paddle::lite::kernels::host::SquareGradCompute, def) .BindInput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("Out@GRAD", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("X@GRAD", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize();