// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input, and attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto pooling_type = op_info->GetAttr("pooling_type"); auto ceil_mode = op_info->GetAttr("ceil_mode"); auto paddings = op_info->GetAttr>("paddings"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ksize = op_info->GetAttr>("ksize"); auto strides = op_info->GetAttr>("strides"); auto exclusive = op_info->GetAttr("exclusive"); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Pool node if (pooling_type == "max") { if (global_pooling) { graph->Add(out_name, graph->builder_.CreateGlobalMaxPool2D(*x_node->data())); } else { graph->Add( out_name, graph->builder_.CreateMaxPool2D(*x_node->data(), CvtShape(ksize), CvtShape(strides), CvtShape(paddings), "NCHW", ceil_mode)); } } else if (pooling_type == "avg") { if (global_pooling) { graph->Add(out_name, graph->builder_.CreateGlobalAvgPool2D(*x_node->data())); } else { // !exclusive ---> count_include_pad graph->Add( out_name, graph->builder_.CreateAvgPool2D(*x_node->data(), CvtShape(ksize), CvtShape(strides), CvtShape(paddings), "NCHW", ceil_mode, !exclusive)); } } else { LOG(WARNING) << "[XPU] Unsupported pooling type: " << pooling_type; return FAILED; } return SUCCESS; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(pool2d, kXPU, paddle::lite::subgraph::xpu::PoolConverter);