// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int MulConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto y_name = op_info->Input("Y").front(); auto y_type = kernel->GetInputDeclType("Y"); CHECK(y_type->precision() == PRECISION(kFloat)); CHECK(y_type->layout() == DATALAYOUT(kNCHW)); auto y = scope->FindMutableTensor(y_name); auto y_dims = y->dims(); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto out = scope->FindMutableTensor(out_name); auto out_dims = out->dims(); auto x_num_col_dims = op_info->GetAttr("x_num_col_dims"); auto x_matrix_dims = x_dims.Flatten2D(x_num_col_dims); auto y_num_col_dims = op_info->GetAttr("y_num_col_dims"); auto y_matrix_dims = y_dims.Flatten2D(y_num_col_dims); CHECK_EQ(x_matrix_dims[1], y_matrix_dims[0]); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Flatten X node if (x_dims.size() != 2) { x_node = graph->Add( x_name + "/reshape", graph->builder_.CreateReshape( *x_node->data(), {-1, static_cast(x_matrix_dims[1])})); } // Y node std::shared_ptr y_node = nullptr; if (graph->Has(y_name)) { y_node = graph->Get(y_name); } else { y_node = graph->Add(y_name, *y); } // Flatten Y node if (y_dims.size() != 2) { y_node = graph->Add( y_name + "/reshape", graph->builder_.CreateReshape( *y_node->data(), {static_cast(y_matrix_dims[0]), -1})); } // Reshape the matmul node with the inferred shape as the output node auto matmul_node = graph->Add( out_name, graph->builder_.CreateMatmul2D(*x_node->data(), *y_node->data(), false)); if (out_dims.size() != 2) { graph->Add(out_name, graph->builder_.CreateReshape( *matmul_node->data(), CvtShape(out_dims))); } return REBUILD_WHEN_SHAPE_CHANGED; } // namespace xpu } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(mul, kXPU, paddle::lite::subgraph::xpu::MulConverter);