// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int MatmulConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto y_name = op_info->Input("Y").front(); auto y_type = kernel->GetInputDeclType("Y"); CHECK(y_type->precision() == PRECISION(kFloat)); CHECK(y_type->layout() == DATALAYOUT(kNCHW)); auto y = scope->FindMutableTensor(y_name); auto y_dims = y->dims(); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto out = scope->FindMutableTensor(out_name); auto out_dims = out->dims(); auto transpose_x = op_info->GetAttr("transpose_X"); auto transpose_y = op_info->GetAttr("transpose_Y"); auto alpha = op_info->GetAttr("alpha"); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Y node std::shared_ptr y_node = nullptr; if (graph->Has(y_name)) { y_node = graph->Get(y_name); } else { y_node = graph->Add(y_name, *y); } // Matmul node if (x_dims.size() > 2 && y_dims.size() >= 2) { // x: [B, ..., M, K], y: [B, ..., K, N], out: [B, ..., M, N] // x: [B, M, K], y: [K, N], out: [B, M, N] // Reshape and transposed X node if (x_dims.size() != 3) { auto m = static_cast(x_dims[x_dims.size() - 2]); auto k = static_cast(x_dims[x_dims.size() - 1]); x_node = graph->Add( x_name + "/reshape", graph->builder_.CreateReshape(*x_node->data(), {-1, m, k})); if (transpose_x) { x_node = graph->Add( x_name + "/reshape/transpose", graph->builder_.CreateTranspose(*x_node->data(), {0, 2, 1})); } } // Reshape and transposed Y node if (y_dims.size() != 3) { auto k = static_cast(y_dims[y_dims.size() - 2]); auto n = static_cast(y_dims[y_dims.size() - 1]); y_node = graph->Add( y_name + "/reshape", graph->builder_.CreateReshape(*y_node->data(), {-1, k, n})); if (!transpose_y) { y_node = graph->Add( y_name + "/reshape/transpose", graph->builder_.CreateTranspose(*y_node->data(), {0, 2, 1})); } } // Matmul node auto matmul_node = graph->Add( out_name, graph->builder_.CreateBatchMatmul(*x_node->data(), *y_node->data())); if (fabs(alpha - 1) > 1e-6f) { matmul_node = graph->Add( out_name, graph->builder_.CreateScale(*matmul_node->data(), alpha)); } if (out_dims.size() != 3) { graph->Add(out_name, graph->builder_.CreateReshape( *matmul_node->data(), CvtShape(out_dims))); } } else if (x_dims.size() == 2 && y_dims.size() == 2) { // x: [M, K], y: [K, N], out: [M, N] if (transpose_x) { x_node = graph->Add(x_name + "/transpose", graph->builder_.CreateTranspose(*x_node->data(), {1, 0})); } auto matmul_node = graph->Add(out_name, graph->builder_.CreateMatmul2D( *x_node->data(), *y_node->data(), transpose_y)); if (fabs(alpha - 1) > 1e-6f) { matmul_node = graph->Add( out_name, graph->builder_.CreateScale(*matmul_node->data(), alpha)); } } else if (x_dims.size() == 1 && y_dims.size() == 1) { // x: [K], y: [K], out: [1] // x: [M], y: [N], x_transpose: true, y_transpose: true, out: [M, N] LOG(FATAL) << "[XPU] Not supported."; return FAILED; } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(matmul, kXPU, paddle::lite::subgraph::xpu::MatmulConverter);