// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int GatherConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto index_name = op_info->Input("Index").front(); auto index_type = kernel->GetInputDeclType("Index"); CHECK(index_type->precision() == PRECISION(kInt32) || index_type->precision() == PRECISION(kInt64)); CHECK(index_type->layout() == DATALAYOUT(kNCHW)); auto index = scope->FindMutableTensor(index_name); auto index_dims = index->dims(); CHECK(index_dims.size() == 1 || (index_dims.size() == 2 && index_dims[1] == 1)); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto out = scope->FindMutableTensor(out_name); auto out_dims = out->dims(); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Index node std::shared_ptr index_node = nullptr; if (graph->Has(index_name)) { index_node = graph->Get(index_name); } else { index_node = graph->Add( index_name, *index, index_type->precision(), index_type->layout()); } // Flatten index node if (index_dims.size() != 1) { index_node = graph->Add(index_name + "/reshape", graph->builder_.CreateReshape(*index_node->data(), {-1}), index_type->precision(), index_type->layout()); } // Reshape the gather node with the inferred shape as the output node auto gather_node = graph->Add(out_name, graph->builder_.CreateGather( *x_node->data(), *index_node->data(), /* axis= */ 0)); if (out_dims.size() != 2) { graph->Add(out_name, graph->builder_.CreateReshape( *gather_node->data(), CvtShape(out_dims))); } return SUCCESS; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(gather, kXPU, paddle::lite::subgraph::xpu::GatherConverter);