// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int SplitConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " << op_type << " ... "; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_names = op_info->Output("Out"); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto axis = op_info->GetAttr("axis"); auto num = op_info->GetAttr("num"); auto sections = op_info->GetAttr>("sections"); int64_t sections_num = static_cast(sections.size()); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Split node auto split_node = graph->Add(op_type + "/" + x_name); auto split_op = split_node->data(); split_op->set_input_x(*x_node->data()); split_op->set_attr_axis(static_cast(axis)); if (num > 0) { split_op->set_attr_output_num(static_cast(num)); } else { split_op->set_attr_output_num(sections_num); auto size_split = ge::AttrValue::LIST_INT(sections.begin(), sections.end()); split_op->set_attr_size_split(size_split); } split_op->create_dynamic_output_y(out_names.size()); int idx = 1; for (auto& out_name : out_names) { auto zero_node = graph->Add(out_name + "/zero" + std::to_string(idx), 0); auto add_node = graph->Add(out_name); auto add_op = add_node->data(); add_op->set_input_x1(*split_node->data(), "y" + std::to_string(idx)); add_op->set_input_x2(*zero_node->data()); idx++; } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(split, kNPU, paddle::lite::subgraph::npu::SplitConverter);