// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include "paddle_api.h" // NOLINT #include "utils/db_post_process.cpp" #include "utils/crnn_process.cpp" #include #include using namespace paddle::lite_api; // NOLINT struct Object { cv::Rect rec; int class_id; float prob; }; int64_t ShapeProduction(const shape_t& shape) { int64_t res = 1; for (auto i : shape) res *= i; return res; } // fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up void neon_mean_scale(const float* din, float* dout, int size, const std::vector mean, const std::vector scale) { if (mean.size() != 3 || scale.size() != 3) { std::cerr << "[ERROR] mean or scale size must equal to 3\n"; exit(1); } float32x4_t vmean0 = vdupq_n_f32(mean[0]); float32x4_t vmean1 = vdupq_n_f32(mean[1]); float32x4_t vmean2 = vdupq_n_f32(mean[2]); float32x4_t vscale0 = vdupq_n_f32(scale[0]); float32x4_t vscale1 = vdupq_n_f32(scale[1]); float32x4_t vscale2 = vdupq_n_f32(scale[2]); float* dout_c0 = dout; float* dout_c1 = dout + size; float* dout_c2 = dout + size * 2; int i = 0; for (; i < size - 3; i += 4) { float32x4x3_t vin3 = vld3q_f32(din); float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0); float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1); float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2); float32x4_t vs0 = vmulq_f32(vsub0, vscale0); float32x4_t vs1 = vmulq_f32(vsub1, vscale1); float32x4_t vs2 = vmulq_f32(vsub2, vscale2); vst1q_f32(dout_c0, vs0); vst1q_f32(dout_c1, vs1); vst1q_f32(dout_c2, vs2); din += 12; dout_c0 += 4; dout_c1 += 4; dout_c2 += 4; } for (; i < size; i++) { *(dout_c0++) = (*(din++) - mean[0]) * scale[0]; *(dout_c1++) = (*(din++) - mean[1]) * scale[1]; *(dout_c2++) = (*(din++) - mean[2]) * scale[2]; } } // resize image to a size multiple of 32 which is required by the network cv::Mat resize_img_type0(const cv::Mat img, int max_size_len, float *ratio_h, float *ratio_w){ int w = img.cols; int h = img.rows; float ratio = 1.f; int max_wh = w >=h ? w : h; if (max_wh > max_size_len){ if (h > w){ ratio = float(max_size_len) / float(h); } else { ratio = float(max_size_len) / float(w); } } int resize_h = int(float(h) * ratio); int resize_w = int(float(w) * ratio); if (resize_h % 32 == 0) resize_h = resize_h; else if (resize_h / 32 < 1) resize_h = 32; else resize_h = (resize_h / 32 - 1) * 32; if (resize_w % 32 == 0) resize_w = resize_w; else if (resize_w /32 < 1) resize_w = 32; else resize_w = (resize_w/32 - 1)*32; cv::Mat resize_img; cv::resize(img, resize_img, cv::Size(resize_w, resize_h)); *ratio_h = float(resize_h) / float(h); *ratio_w = float(resize_w) / float(w); return resize_img; } using namespace std; void RunRecModel(cv::Mat image, std::string rec_model_file){ MobileConfig config; config.set_model_from_file(rec_model_file); std::shared_ptr predictor_crnn = CreatePaddlePredictor(config); std::vector mean = {0.5f, 0.5f, 0.5f}; std::vector scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f}; cv::Mat crop_img; image.copyTo(crop_img); cv::Mat resize_img; std::string dict_path = "./crnn/ppocr_keys_v1.txt"; auto charactor_dict = read_dict(dict_path); float wh_ratio = float(crop_img.cols) / float(crop_img.rows); resize_img = crnn_resize_img(crop_img, wh_ratio); resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f); const float* dimg = reinterpret_cast(resize_img.data); std::unique_ptr input_tensor0(std::move(predictor_crnn->GetInput(0))); input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols}); auto* data0 = input_tensor0->mutable_data(); neon_mean_scale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale); //// Run CRNN predictor predictor_crnn->Run(); // Get output and run postprocess std::unique_ptr output_tensor0( std::move(predictor_crnn->GetOutput(0))); auto* rec_idx = output_tensor0->data(); auto rec_idx_lod = output_tensor0->lod(); auto shape_out = output_tensor0->shape(); std::vector pred_idx; std::cout << "The predict text index is : " << std::endl; for (int n=int(rec_idx_lod[0][0]); n output_tensor1(std::move(predictor_crnn->GetOutput(1))); auto* predict_batch = output_tensor1->data(); auto predict_shape = output_tensor1->shape(); auto predict_lod = output_tensor1->lod(); int argmax_idx; int blank = predict_shape[1]; float score = 0.f; int count =0; float max_value =0.0f; for (int n=predict_lod[0][0]; n 1e-5){ score += max_value; count += 1; } } score /= count; std::cout << "\tscore: " << score << std::endl; } std::vector>> RunDetModel(std::string model_file, std::string img_path) { auto start = img_path.find_last_of("/"); auto end = img_path.find_last_of("."); std::string img_name = img_path.substr(start+1, end - start - 1); // Set MobileConfig MobileConfig config; config.set_model_from_file(model_file); std::shared_ptr predictor = CreatePaddlePredictor(config); // Read img int max_side_len = 960; float ratio_h{}; float ratio_w{}; cv::Mat img = imread(img_path, cv::IMREAD_COLOR); cv::Mat srcimg; img.copyTo(srcimg); img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w); cv::Mat img_fp; img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f); // Prepare input data from image std::unique_ptr input_tensor0(std::move(predictor->GetInput(0))); input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols}); auto* data0 = input_tensor0->mutable_data(); std::vector mean = {0.485f, 0.456f, 0.406f}; std::vector scale = {1/0.229f, 1/0.224f, 1/0.225f}; const float* dimg = reinterpret_cast(img_fp.data); neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale); // Run predictor predictor->Run(); // Get output and post process std::unique_ptr output_tensor( std::move(predictor->GetOutput(0))); auto* outptr = output_tensor->data(); auto shape_out = output_tensor->shape(); int64_t out_numl = 1; double sum = 0; for (auto i : shape_out) { out_numl *= i; } // Save output float pred[shape_out[2]][shape_out[3]]; unsigned char cbuf[shape_out[2]][shape_out[3]]; for (int i=0; i< int(shape_out[2]*shape_out[3]); i++){ pred[int(i/int(shape_out[3]))][int(i%shape_out[3])] = float(outptr[i]); cbuf[int(i/int(shape_out[3]))][int(i%shape_out[3])] = (unsigned char) ((outptr[i])*255); } cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1, (unsigned char*)cbuf); cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F, (float *)pred); const double threshold = 0.3*255; const double maxvalue = 255; cv::Mat bit_map; cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY); auto boxes = boxes_from_bitmap(pred_map, bit_map); std::vector>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, srcimg); //// visualization cv::Point rook_points[filter_boxes.size()][4]; for (int n=0; n