// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/cxx_api.h" #include #include #include #include "lite/api/lite_api_test_helper.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" // For training. DEFINE_string(startup_program_path, "", ""); DEFINE_string(main_program_path, "", ""); namespace paddle { namespace lite { #ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK TEST(CXXApi, test) { const lite::Tensor* out = RunHvyModel(); LOG(INFO) << out << " memory size " << out->data_size(); for (int i = 0; i < 10; i++) { LOG(INFO) << "out " << out->data()[i]; } LOG(INFO) << "dims " << out->dims(); // LOG(INFO) << "out " << *out; } TEST(CXXApi, save_model) { lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kX86), PRECISION(kFloat)}}); predictor.Build(FLAGS_model_dir, "", "", Place{TARGET(kCUDA), PRECISION(kFloat)}, valid_places); LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model; predictor.SaveModel(FLAGS_optimized_model, lite_api::LiteModelType::kProtobuf); predictor.SaveModel(FLAGS_optimized_model + ".naive", lite_api::LiteModelType::kNaiveBuffer); } /*TEST(CXXTrainer, train) { Place prefer_place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)}); std::vector valid_places({prefer_place}); auto scope = std::make_shared(); CXXTrainer trainer(scope, prefer_place, valid_places); std::string main_program_pb, startup_program_pb; ReadBinaryFile(FLAGS_main_program_path, &main_program_pb); ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb); framework::proto::ProgramDesc main_program_desc, startup_program_desc; main_program_desc.ParseFromString(main_program_pb); startup_program_desc.ParseFromString(startup_program_pb); // LOG(INFO) << main_program_desc.DebugString(); for (const auto& op : main_program_desc.blocks(0).ops()) { LOG(INFO) << "get op " << op.type(); } return; trainer.RunStartupProgram(startup_program_desc); auto& exe = trainer.BuildMainProgramExecutor(main_program_desc); auto* tensor0 = exe.GetInput(0); tensor0->Resize(std::vector({100, 100})); auto* data0 = tensor0->mutable_data(); data0[0] = 0; exe.Run(); }*/ #endif // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK #ifdef LITE_WITH_ARM TEST(CXXApi, save_model) { lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}}); predictor.Build(FLAGS_model_dir, "", "", Place{TARGET(kARM), PRECISION(kFloat)}, valid_places); LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model; predictor.SaveModel(FLAGS_optimized_model); predictor.SaveModel(FLAGS_optimized_model + ".naive", lite_api::LiteModelType::kNaiveBuffer); } TEST(CXXApi, load_model_naive) { lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}}); predictor.Build(FLAGS_optimized_model + ".naive", "", "", Place{TARGET(kARM), PRECISION(kFloat)}, valid_places, {}, lite_api::LiteModelType::kNaiveBuffer); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(std::vector({1, 100})); auto* data = input_tensor->mutable_data(); for (int i = 0; i < 100; i++) { data[i] = 1; } predictor.Run(); std::vector result({0.4350058, -0.6048313, -0.29346266, 0.40377066, -0.13400325, 0.37114543, -0.3407839, 0.14574292, 0.4104212, 0.8938774}); auto* output_tensor = predictor.GetOutput(0); auto output_shape = output_tensor->dims().Vectorize(); ASSERT_EQ(output_shape.size(), 2); ASSERT_EQ(output_shape[0], 1); ASSERT_EQ(output_shape[1], 500); int step = 50; for (int i = 0; i < result.size(); i += step) { EXPECT_NEAR(output_tensor->data()[i], result[i], 1e-6); } } #endif } // namespace lite } // namespace paddle