// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/slice_op.h" #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace operators { bool SliceOp::CheckShape() const { CHECK_OR_FALSE(param_.X); CHECK_OR_FALSE(param_.Out); CHECK_LT(param_.X->dims().size(), 7u) << "The rank of input X should be less than 7"; return true; } bool SliceOp::InferShapeImpl() const { CHECK_OR_FALSE(param_.Out); // TODO(Superjomn) Enable data sharing. auto in_dims = param_.X->dims(); auto out_dims = in_dims; // CHECK_EQ(param_.starts.size(), param_.ends.size()) // << "for slice op starts and ends must be equal"; int dim_value, start, end; auto axes = param_.axes; auto starts = param_.starts; auto ends = param_.ends; auto decrease_axis = param_.decrease_axis; for (size_t i = 0; i < axes.size(); ++i) { CHECK_LT(param_.axes[i], in_dims.size()) << "The index of dimension in " "axes must be less than the " "size of input shape."; if (param_.infer_flags.size() > i && param_.infer_flags[i] == -1) { out_dims[axes[i]] = -1; } else { // infer out_dim shape dim_value = out_dims[axes[i]]; if (dim_value > 0) { start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i]; end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i]; start = (std::max)(start, 0); end = (std::max)(end, 0); end = (std::min)(end, dim_value); out_dims[axes[i]] = end - start; } } } // generate new shape if (decrease_axis.size() > 0) { std::vector new_out_shape; for (size_t i = 0; i < decrease_axis.size(); ++i) { if (param_.infer_flags[i] != -1) { CHECK_EQ(out_dims[decrease_axis[i]], 1) << "decrease dim should be 1"; } out_dims[decrease_axis[i]] = 0; } for (size_t i = 0; i < out_dims.size(); ++i) { if (out_dims[i] != 0) { new_out_shape.push_back(out_dims[i]); } } if (new_out_shape.size() == 0) { new_out_shape.push_back(1); } DDim new_dims; new_dims.ConstructFrom(new_out_shape); out_dims = new_dims; } param_.Out->Resize(out_dims); if (axes[0] != 0) { param_.Out->set_lod(param_.X->lod()); } return true; } bool SliceOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) { AttachParam(¶m_); param_.X = scope->FindVar(opdesc.Input("Input").front())->GetMutable(); param_.Out = scope->FindVar(opdesc.Output("Out").front())->GetMutable(); CHECK(param_.X); CHECK(param_.Out); param_.axes = opdesc.GetAttr>("axes"); if (opdesc.HasAttr("infer_flags")) { param_.infer_flags = opdesc.GetAttr>("infer_flags"); } else { // Initialize infer_flags with 1. // To be compatible with other op tests in which infer_flags is not set. param_.infer_flags = std::vector(param_.axes.size(), 1); } if (opdesc.HasAttr("decrease_axis")) { param_.decrease_axis = opdesc.GetAttr>("decrease_axis"); } // The priority: StartsTensor > StartsTensorList > attr(starts). // The priority: EndsTensor > EndsTensorList > attr(ends). size_t starts_size, ends_size; if (opdesc.HasAttr("starts")) { param_.starts = opdesc.GetAttr>("starts"); } if (opdesc.HasAttr("ends")) { param_.ends = opdesc.GetAttr>("ends"); } starts_size = param_.starts.size(); ends_size = param_.ends.size(); if (opdesc.HasInput("StartsTensorList") && !opdesc.Input("StartsTensorList").empty()) { LOG(INFO) << "opdesc input size " << opdesc.Input("StartsTensorList").size(); LOG(INFO) << "param init size " << param_.StartsTensorList.size(); auto StartsTensorList = opdesc.Input("StartsTensorList"); param_.StartsTensorList.clear(); for (auto var : StartsTensorList) { param_.StartsTensorList.push_back( scope->FindVar(var)->GetMutable()); } CHECK_GT(param_.StartsTensorList.size(), 0u) << "StartsTensorList size can't be zero"; starts_size = param_.StartsTensorList.size(); } if (opdesc.HasInput("EndsTensorList") && !opdesc.Input("EndsTensorList").empty()) { auto EndsTensorList = opdesc.Input("EndsTensorList"); param_.EndsTensorList.clear(); for (auto var : EndsTensorList) { param_.EndsTensorList.push_back( scope->FindVar(var)->GetMutable()); } CHECK_GT(param_.EndsTensorList.size(), 0u) << "EndsTensorList size can't be zero"; ends_size = param_.EndsTensorList.size(); } if (opdesc.HasInput("StartsTensor") && !opdesc.Input("StartsTensor").empty()) { param_.StartsTensor = scope->FindVar(opdesc.Input("StartsTensor").front()) ->GetMutable(); } else { CHECK_EQ(starts_size, param_.axes.size()) << "The size of starts must be equal to the size of axes."; } if (opdesc.HasInput("EndsTensor") && !opdesc.Input("EndsTensor").empty()) { param_.EndsTensor = scope->FindVar(opdesc.Input("EndsTensor").front()) ->GetMutable(); } else { CHECK_EQ(ends_size, param_.axes.size()) << "The size of ends must be equal to the size of axes."; } return true; } } // namespace operators } // namespace lite } // namespace paddle REGISTER_LITE_OP(slice, paddle::lite::operators::SliceOp);